Preview

Proceedings of the National Academy of Sciences of Belarus, Medical series

Advanced search

Magnetic resonance imaging apparent diffusion coefficient in lymphomas and its dependence on a number of technical and clinical factors

https://doi.org/10.29235/1814-6023-2022-19-1-70-83

Abstract

The purpose of this study was to determine the value of apparent diffusion coefficient (ADC) in various morphological variants of lymphomas, to study dependence of ADC on the anatomical location of lesions and technical scanning parameters to establish the usefulness in differentiating normal and involved lymph nodes (LN).

Whole body MRI with diffusion-weighted imaging (DWI) was performed in 209 patients with lymphoma before treatment. A target LN was selected and ADC determined in each patient.

The ADC value does not depend on the use of the parallel imaging technique (p = 0.56), higher when using built-in compared to superficial coil (p < 0.0001), higher when using respiratory triggering than free breathing (p < 0.02). The highest ADC values (х10-3 mm2/s) were obtained in the involved LN of the lung hilar (1.429 ± 0.396) and mediastinum (1.338 ± 0.313), lower values (p < 0.01) - in the LN of the abdomen (1.011 ± 0.298), axillary (0.840 ± 0.196), neck (0.834 ± 0.259), inguinal (0.753 ± 0.128) and iliac (0.738 ± 0.129). Depending on the morphological variant of lymphoma, the highest ADC value was obtained in Hodgkin lymphoma - 1.168 ± 0.372 (p < 0.0002). ADC in diffuse large B-cell non-Hodgkin lymphoma was 0.951 ± 0.320, indolent non-Hodgkin lymphomas - 0.756 ± 0.246, mantle zone non-Hodgkin lymphoma - 0.759 ± 0.211.

In conclusion, DWI in lymphoma should be performed using surface coil, parallel imaging, and free breathing. Statistically significant differences in ADC were found depending on the anatomical location of the lesions and the morphological variant of lymphoma. Given the dependence of ADC on various technical and clinical factors, it is not possible to establish a single threshold value for differentiating involved and normal LN. The use of the LN size criterion for this purpose is the most optimal in lymphoma.

About the Authors

S. A. Kharuzhyk
N.N. Alexandrov National Cancer Center of Belarus
Belarus

Siarhei A. Kharuzhyk - Ph. D. (Med.), Associate Professor, N.N. Alexandrov National Cancer Centre.

223040, Lesnoy, Minsk region.



A. V. Karman
N.N. Alexandrov National Cancer Center of Belarus
Belarus

Andrey V. Karman - Ph. D. (Med.), Associate Professor, N.N. Alexandrov National Cancer Centre.

223040, Lesnoy, Minsk region.



E. A. Zhavrid
N.N. Alexandrov National Cancer Center of Belarus
Belarus

Edward A. Zhavrid - D. Sc. (Med.), Professor, N.N. Alexandrov National Cancer Centre.

223040, Lesnoy, Minsk region.



References

1. Takahara T., Imai Y., Yamashita T., Yasuda S., Nasu S., van Cauteren M. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiation Medicine, 2004, vol. 22, no. 4, pp. 275-282.

2. Khoruzhik S. A., Zhavrid E. A., Sachivko N. V., Portasova N. P., Karman E. I., Karman A. V. Possibilities of whole-body diffusion-weighted magnetic resonance imaging compared to X-ray computed tomography in staging lymphoma. Onkologicheskii zhurnal [Oncological journal], 2015, vol. 9, no. 1, pp. 43-48 (in Russian).

3. Khoruzhik S. A., Zhavrid E. A., Dzyuban A. V., Poddubnyi K. V., Sukolinskaya E. V., Kalenik O. A. Whole body diffusion-weighted magnetic resonance imaging and positron emission tomography/computed tomography for staging of lymphomas. Vestnik rentgenolgogi i radiologii [Bulletin of radiology and radiology], 2019, vol. 100, no. 6, pp. 321-334 (in Russian).

4. Khoruzhik S. A., Zhavrid E. A. Prospective study of prognostic effectiveness of diffusion-weighted magnetic resonance imaging in Hodgkin lymphoma. Onkologicheskii zhurnal [Oncological journal], 2020, vol. 14, no. 2-3, pp. 52-67 (in Russian).

5. Khoruzhik S. A., Zhavrid E. A. Prospective study of prognostic effectiveness of diffusion-weighted magnetic resonance imaging in non-Hodgkin lymphomas. Evraziiskii onkologicheskii zhurnal [Eurasian oncological journal], 2020, vol. 8, no. 3, pp. 220-238 (in Russian).

6. Khoruzhik S. A., Zhavrid E. A., Dzyuban A. V., Sukolinskaya E. V., Kalenik O. A. Comparison of the diagnostic effectiveness of whole body magnetic resonance imaging with diffusion weighted imaging and positron emission tomography/ computed tomography in determining tumor response in lymphoma after the end of chemotherapy: Minsk scale and Deauville scale. Luchevaya diagnostika i terapiya [Radiation diagnostics and therapy], 2020, no. 1, pp. 78-92 (in Russian).

7. Kwee T. C., Ludwig I., Uiterwaal C. S., van Ufford H. M. E., Vermoolen M. A., Fijnheer R., Bierings M. B., Nievelstein R. A. J. ADC measurements in the evaluation of lymph nodes in patients with non-Hodgkin lymphoma: feasibility study. MAGMA, 2011, vol. 24, no. 1, pp. 1-8. https://doi.org/10.1007/s10334-010-0226-7

8. Abdel Razek A. A., Elkammary S., Elmorsy A. S., Elshafey M., Elhadedy T. Characterization of mediastinal lymphadenopathy with diffusion-weighted imaging. Magnetic Resonance Imaging, 2011, vol. 29, no. 2, pp. 167-172. https://doi.org/10.1016/j.mri.2010.08.002

9. Gümüştaş S., Inan N., Akansel G., Başyïğït I., Cïftçi E. Differentiation of lymphoma versus sarcoidosis in the setting of mediastinal-hilar lymphadenopathy: assessment with diffusion-weighted MR imaging. Sarcoidosis Vascular Diffuse Lung Disease, 2013, vol. 30, no. 1, pp. 52‒59.

10. Sudarkina A. V., Dergilev A. P., Kozlov V. V., Fokina Yu. A., Klimova I. P., Gorbunov N. A., Shalygin K. V. Differential diagnosis of mediastinal lymphadenopathy in lymphoma and sarcoidosis using magnetic resonance imaging. Luchevaya diagnostika i terapiya [Radiation diagnostics and therapy], 2020, no. 3, pp. 56-62 (in Russian).

11. Sumi M., Ichikawa Y., Nakamura T. Diagnostic ability of apparent diffusion coefficients for lymphomas and carcinomas in the pharynx. European Radiology, 2007, vol. 17, no. 10, pp. 2631-2637. https://doi.org/10.1007/s00330-007-0588-z

12. Mosavi F., Wassberg C., Selling J., Molin D., Ahlstrom H. Whole-body diffusion-weighted MRI and (18)F-FDG PET/CT can discriminate between different lymphoma subtypes. Clinical Radiology, 2015, vol. 70, no. 11, pp. 1229-1236. https://doi.org/10.1016/j.crad.2015.06.087

13. De Paepe K. N., De Keyzer F., Wolter P., Bechter O., Dierickx D., Janssens A. [et al.]. Improving lymph node characterization in staging malignant lymphoma using first-order ADC texture analysis from whole-body diffusion-weighted MRI. Journal Magnetic Resonance Imaging, 2018, vol. 48, no. 4, pp. 897-906. https://doi.org/10.1002/jmri.26034

14. Albano D., Patti C., Matranga D., Lagalla R., Midiri M., Galia M. Whole-body diffusion-weighted MR and FDG-PET/CT in Hodgkin lymphoma: predictive role before treatment and early assessment after two courses of ABVD. European Journal of Radiology, 2018, vol. 103, pp. 90-98. https://doi.org/10.1016/j.ejrad.2018.04.014

15. Khoruzhik S. A. Diffusion-weighted magnetic resonance imaging of normal lymph nodes. Evraziiskii onkologicheskii zhurnal [Eurasian oncological journal], 2020, vol. 8, no. 1, pp. 30-39 (in Russian).

16. Khoruzhik S. A., Aniskevich O. R., Zhavrid E. A. Correlation of the magnetic resonance imaging apparent diffusion coefficient with the cellularity in the histological material in different morphological types of lymphomas. Problemy zdorov'ya i ekologii [Health and environmental issues], 2021, vol. 18, no. 2, pp. 102-112 (in Russian).

17. Meyer H. J., Pazaitis N., Surov A. ADC histogram analysis of muscle lymphoma-correlation with histopathology in a rare entity. British Journal of Radiology, 2018, vol. 91, no. 1090, art. 20180291. https://doi.org/10.1259/bjr.20180291

18. Albano D., La Grutta L., Grassedonio E., Patti C., Lagalla R., Midiri M., Galia M. Pitfalls in whole body MRI with diffusion weighted imaging performed on patients with lymphoma: What radiologists should know. Magnetic Resonance Imaging, 2016, vol. 34, no. 7, pp. 922-931. https://doi.org/10.1016/j.mri.2016.04.023

19. Khoruzhik S. A., Zhavrid E. A., Karman A. V., Shimanets S. V., Yatskov N. N. Investigation of intra- and interobserver reproducibility of the apparent diffusion coefficient in lymphomas. Onkologicheskii zhurnal [Oncological journal], 2016, vol. 10, no. 3, pp. 77-85 (in Russian).

20. Taouli B., Beer A. J., Chenevert T., Collins D., Lehman C., Matos C. [et al.] Diffusion-weighted imaging outside the brain: Consensus statement from an ISMRM-sponsored workshop. Journal of Magnetic Resonance Imaging, 2016, vol. 44, no. 3, pp. 521-540. https://doi.org/10.1002/jmri.25196

21. Hamilton J., Franson D., Seiberlich N. Recent advances in parallel imaging for MRI. Progress in nuclear magnetic resonance spectroscopy, 2017, vol. 101, pp. 71-95. https://doi.org/10.1016/j.pnmrs.2017.04.002

22. Jin G., An N., Jacobs M. A., Li K. The role of parallel diffusion-weighted imaging and apparent diffusion coefficient (ADC) map values for evaluating breast lesions: preliminary results. Academic Radiology, 2010, vol. 17, no. 4, pp. 456-463. https://doi.org/10.1016/j.acra.2009.12.004

23. Mesmann C., Sigovan M., Berner L.-P., Abergel A., Tronc F., Berthezene Y., Douek P., Boussel L. Evaluation of image quality of DWIBS versus DWI sequences in thoracic MRI at 3T. Magnetic Resonance Imaging, 2014, vol. 32, no. 10, pp. 1237-1241. https://doi.org/10.1016/j.mri.2014.08.015

24. Shepeleva L. P., Tyurin I. E. Computed tomography pattern of unchanged mediastinal lymph nodes in children with uninfected Mycobacterium tuberculosis. Vestnik rentgenologii i radiologii [Bulletin of radiology and radiology], 2014, no. 4, pp. 26-30 (in Russian).

25. Sun M., Cheng J., Zhang Y., Bai J., Wang F., Meng Y., Li Z. Application of DWIBS in malignant lymphoma: correlation between ADC values and Ki-67 index. European Radiology, 2018, vol. 28, no. 4, pp. 1701-1708. https://doi.org/10.1007/s00330-017-5135-y

26. Wu X., Sikio M., Pertovaara H., Jarvenpaa R., Eskola H., Dastidar P., Kellokumpu-Lehtinen P.-L. Differentiation of diffuse large B-cell lymphoma from follicular lymphoma using texture analysis on conventional MR Images at 3.0 Tesla. Academic Radiology, 2016, vol. 23, no. 6, pp. 696-703. https://doi.org/10.1016/j.acra.2016.01.012

27. Ustabasioglu F. E., Samanci C., Alis D., Samanci N. S., Kula O., Olgun D. C. Apparent diffusion coefficient measurement in mediastinal lymphadenopathies: differentiation between benign and malignant lesions. Journal of Clinical Imaging Sciences, 2017, vol. 7, art. 12. https://doi.org/10.4103/jcis.JCIS_84_16

28. Priola A. M., Priola S. M., Gned D., Piacibello E., Sardo D., Parvis G., Torti D., Ardissone F., Veltri A. Diffusion-weighted quantitative MRI to diagnose benign conditions from malignancies of the anterior mediastinum: Improvement of diagnostic accuracy by comparing perfusion-free to perfusion-sensitive measurements of the apparent diffusion coefficient. Journal of Magnetic Resonance Imaging, 2016, vol. 44, no. 3, pp. 758-769. https://doi.org/10.1002/jmri.25203

29. Kwee T. C., Vermoolen M. A., Akkerman E. A., Kersten M. J., Fijnheer R., Ludwig I. [et al.] Whole-body MRI, including diffusion-weighted imaging, for staging lymphoma: comparison with CT in a prospective multicenter study. Journal of Magnetic Resonance Imaging, 2014, vol. 40, no. 1, pp. 26-36. https://doi.org/10.1002/jmri.24356

30. Klenk C., Gawande R., Uslu L., Khurana A., Qiu D., Quon A., Donig J., Rosenberg J., Luna-Fineman S., Moseley M., Daldrup-Link H. E. Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study. Lancet Oncology, 2014, vol. 15, no. 3, pp. 275-285. https://https://doi.org/10.1016/S1470-2045(14)70021-X


Review

For citations:


Kharuzhyk S.A., Karman A.V., Zhavrid E.A. Magnetic resonance imaging apparent diffusion coefficient in lymphomas and its dependence on a number of technical and clinical factors. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2022;19(1):70-83. (In Russ.) https://doi.org/10.29235/1814-6023-2022-19-1-70-83

Views: 366


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)