Preview

Известия Национальной академии наук Беларуси. Серия медицинских наук

Расширенный поиск

Влияние глюкокортикоидных гормонов на функцию щитовидной железы

https://doi.org/10.29235/1814-6023-2021-18-1-117-126

Полный текст:

Аннотация

На основании проведенного анализа данных литературы установлено, что введение экзогенных аналогов глюкокортикоидных гормонов (кортизона, гидрокортизона, кортикостерона, дексаметазона, бетаметазона и др.) приводит к изменению тиреоидной функции на всех уровнях (биосинтеза и секреции гормонов щитовидной железой, их транспорта, взаимодействия с рецепторами в органах-мишенях, биологического действия, метаболизма и экскреции), а также к влиянию на ее регуляцию как трансгипофизарно (блокирует секрецию тиреолиберина, тиреотропного гормона, кортиколиберина, соматолиберина и продукцию соматотропного гормона под влиянием послед- него), так и парагипофизарно (стимулирует образование инсулина β-инсулоцитами поджелудочной железы).

Об авторах

Е. А. Гусакова
Витебский государственный ордена Дружбы народов медицинский университет
Беларусь

Гусакова Елена Анатольевна – к анд. б иол. наук, доцент

пр. Фрунзе, 27, 210017, г. Витебск, Республика Беларусь



И. В. Городецкая
Витебский государственный ордена Дружбы народов медицинский университет
Беларусь

Городецкая Ирина Владимировна – д-р мед. наук, профессор, декан

пр. Фрунзе, 27, 210017, г. Витебск, Республика Беларусь



Список литературы

1. Эндокринные заболевания как медико-социальная проблема современности / Е. В. Кузнецов [и др.] // Современные проблемы науки и образования. – 2017. – № 4. – С. 62.

2. Городецкая, И. В. Влияние йодсодержащих гормонов щитовидной железы на центральный отдел стресс- лимитирующей системы / И. В. Городецкая, Е. А. Гусакова // Вестн. ВГМУ. – 2018. – Т. 17, № 3. – С. 7–15.

3. Влияние глюкокортикоидов на морфологию и функцию щитовидной железы крыс / В. В. Виноградов [и др.] // Вес. Нац. акад. навук Беларусi. Сер. бiял. навук. – 2010. – № 3. – С. 87–93.

4. Stress and glucocorticoids increase transthyretin expression in rat choroid plexus via mineralocorticoid and glucocorticoid receptors / A. Martinho [at al.] // J. Mol. Neurosci. – 2012. – Vol. 48, N 1. – P. 1–13. https://doi.org/10.1007/s12031-012-9715-7

5. Sviridov, O. V. Interaction of thyroid hormones with immunoglobulins isolated from human blood serum. I. Parameters of complex formation and the nature of the binding reaction / O. V. Sviridov, M. N. Ermolenko // Biokhimiia. – 1994. – Vol. 59, N 1. – P. 78–87.

6. Immune regulation by glucocorticoids can be linked to cell type-dependent transcriptional responses / L. М. Franco // J. Exp. Med. – 2019. – Vol. 216, N 2. – P. 384–406. https://doi.org/10.1084/jem.20180595

7. Regulation of neuronal thyroid hormone receptor alpha 1 mRNA by hydrocortisone, thyroid hormone and retinoic acid / M. Satyanarayana [et al.] // Dev. Neurosci. – 1994. – Vol. 16, N 5–6. – P. 255–259. https://doi.org/10.1159/000112117

8. Thyroid hormone receptor beta1 gene expression is increased by dexamethasone at transcriptional level in rat liver / M. M. Montesinos [et al.] // Life Sci. – 2006. – Vol. 78, N 22. – P. 2584–2594. https://doi.org/10.1016/j.lfs.2005.10.019

9. Gil-Ibáñez, P. Hormone regulation of gene expression in primary cerebrocortical cells: Role of thyroid hormone receptor subtypes and interactions with retinoic acid and glucocorticoids / P. Gil-Ibáñez, J. Bernal, B. Morte // PLoS ONE. – 2014. – Vol. 9, N 3. – P. 91692. https://doi.org/10.1371/journal.pone.0091692

10. van der Geyten, S. Developmentally defined regulation of thyroid hormone metabolism by glucocorticoids in the rat / S. van der Geyten, V. M. Darras // J. Endocrinol. – 2005. – Vol. 185, N 2. – P. 327–336. https://doi.org/10.1677/joe.1.05974

11. Differential effects of maternal dexamethasone treatment on circulating thyroid hormone concentrations and tissue deiodinase activity in the pregnant ewe and fetus / A. J. Forhead [et al.] // Endocrinology. – 2007. – Vol. 148, N 2. – P. 800–805. https://doi.org/10.1210/en.2006-1194

12. Regulation of thyroid hormone availability by iodothyronine deiodinases at the blood-brain barrier in birds / C. H. Verhoelst [et al.] // Ann. NY Acad. Sci. – 2005. – Vol. 1040, N 1. – P. 501–503. https://doi.org/10.1196/annals.1327.103

13. Hernandez, A. Dexamethasone inhibits growth factor-induced type 3 deiodinase activity and mRNA expression in a cultured cell line derived from rat neonatal brown fat vascular-stromal cells / A. Hernandez, D. L. Germain // Endocrinology. – 2002. – Vol. 143, N 7. – P. 2652–2658. https://doi.org/10.1210/endo.143.7.8923

14. Kakucska, I. Qi. Changes in adrenal status affect hypothalamic thyrotropin-releasing hormone gene expression in parallel with corticotropin-releasing hormone / I. Qi. Kakucska, R. M. Lechan // Endocrinology. – 1995. – Vol. 136, N 7. – P. 2795–2802. https://doi.org/10.1210/endo.136.7.7789304

15. Glucocorticoids decrease thyrotropin-releasing hormone messenger ribonucleic acid expression in the paraventricular nucleus of the human hypothalamus / A. Alkemade [et al.] // J. Clin. Endocrinol. Metabol. – 2005. – Vol. 90, N 1. – P. 323–327. https://doi.org/10.1210/jc.2004-1430

16. Luo, L. G. Glucocorticoids stimulate thyrotropinreleasing hormone gene expression in cultured hypothalamic neurons / L. G. Luo, T. Bruhn, I. M. Jackson // Endocrinology. – 1995. – Vol. 136, N 11. – P. 4945–4950. https://doi.org/10.1210/endo.136.11.7588228

17. Dexamethasone rapidly regulates TRH mRNA levels in hypothalamic cell cultures: interaction with the cAMP pathway / L. Perez-Martinez [et al.] // Neuroendocrinology. – 1998. – Vol. 68, N 5. – P. 345–354. https://doi.org/10.1159/000054383

18. Benický, J. Effects of dexamethasone on pancreatic growth and thyroliberin (TRH) content in neonatal rat pancreas / J. Benický, V. Strbák // Physiol. Res. – 1995. – Vol. 44, N 3. – P. 165–172.

19. Dexamethasone treatment during pregnancy influences the number of TSH cells in rat fetuses / M. Manojlovic- Stojanoski [et al.] // Arch. Biol. Sci. – 2009. – Vol. 60, N 4. – P. 555–560. https://doi.org/10.2298/ABS0804555M

20. Dynamic changes of central thyroid functions in the management of Cushing’s syndrome / S. C. Dogansen [et al.] // Arch. Endocrinol. Metab. – 2018. – Vol. 62, N 2. – P. 164–171. http://dx.doi.org/10.20945/2359-3997000000019

21. Diminished and irregular TSH secretion with delayed acrophase in patients with Cushing’s syndrome / F. Roelfsema [et al.] // Eur. J. Endocrinol. – 2009. – Vol. 161, N 5. – P. 695–703. https://doi.org/10.1530/EJE-09-0580

22. Primary thyroid disorders in endogenous Cushing’s syndrome / H. Niepomniszcze [et al.] // Eur. J. Endocrinol. – 2002. – Vol. 147, N 3. – P. 305–311. https://doi.org/10.1530/eje.0.1470305

23. Thyroid dysfunction in isolated adrenocorticotropic hormone (ACTH) deficiency: case report and literature review / T. Murakami [et al.] // Endocrinol. J. – 1993. – Vol. 40, N 4. – P. 473–478. https://doi.org/10.1507/endocrj.40.473

24. Tsigos, C. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress / C. Tsigos, G. P. Chrousos // J. Psychosom Res. – 2002. – Vol. 53, N 4. – P. 865–871. https://doi.org/10.1016/s0022-3999(02)00429-4

25. Giustina, A. The role of glucocorticoids in the regulation of growth hormone secretion. Mechanisms and clinical significance / A. Giustina, W. B. Wehrenberg // Trends Endocrinol. Metabol. – 1992. – Vol. 3, N 8. – P. 306–311. https://doi.org/10.1016/1043-2760(92)90142-N

26. Thyroid function in children with growth hormone (GH) deficiency during the initial phase of GH replacement therapy – clinical implications / J. Smyczynska [at al.] // Thyroid Res. – 2010. – Vol. 3, N 1. – P. 2. https://doi.org/10.1186/1756-6614-3-2

27. Keskin, M. Effects of 1-year growth hormone replacement therapy on thyroid volume and function of the children and adolescents with idiopathic growth hormone deficiency / M. Keskin, E. Bayramoglu, Z. Aycan // J. Pediatr. Endocrinol. Metab. – 2017. – Vol. 30, N 11. – P. 1187– 1190. https://doi.org/10.1515/jpem-2017-0210

28. An examination of the effects of different doses of recombinant human growth hormone on children with growth hormone deficiency / Y. Xue [et al.] // Exp. Ther. Med. – 2016. – Vol. 11, N 5. – P. 1647–1652. https://doi.org/10.3892/etm.2016.3091

29. Thyroid function in children with growth hormone deficiency during long-term growth hormone replacement therapy / Е. Witkowska-Sędek [et al.] // Cent. Eur. J. Immunol. – 2018. – Vol. 43, N 3. – P. 255–261. https://doi.org/10.5114/ceji.2018.80043

30. Investigation of the mechanisms contributing to the compensatory increase in insulin secretion during dexamethasoneinduced insulin resistance in rhesus macaques / B. P. Cummings [et al.] // J. Endocrinol. – 2013. – Vol. 216, N 2. – P. 207–215. https://doi.org/10.1530/JOE-12-0459

31. Somatostatin inhibits PC Cl3 thyroid cell proliferation through the modulation of phosphotyrosine phosphatase activity / T. Florio [et al.] // J. Biol. Chem. – 1996. – Vol. 271, N 11. – Р. 6129–6136. https://doi.org/10.1074/jbc.271.11.6129

32. Taton, M. Dissociation of the stimuli for cell hypertrophy and cell division in the dog thyrocyte: insulin promotes protein accumulation while TSH triggers DNA synthesis / M. Taton, J. E. Dumont // Exp. Cell Res. – 1995. – Vol. 221, N 2. – P. 530–533. https://doi.org/10.1006/excr.1995.1405

33. Insulin and TSH promote growth in size of PC Cl3 rat thyroid cells, possibly via a pathway different from DNA synthesis: comparison with FRTL-5 cells / T. Kimura [et al.] // Eur. J. Endocrinol. – 1999. – Vol. 140, N 1. – Р. 94–103. https://doi.org/10.1530/eje.0.1400094

34. Roelfsema, V. The growth hormone and insulin-like growth factor axis: its manipulation for the benefit of growth disorders in renal failure / V. Roelfsema, R. G. Clark // J. Am. Soc. Nephrol. – 2001. – Vol. 12, N 6. – P. 1297–1300.

35. Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors / J. E. Dumont [et al.] // Physiol Rev. – 1992. – Vol. 72, N 3. – P. 667–697. https://doi.org/10.1152/physrev.1992.72.3.667

36. Regulation of calcium-permeable TRPV2 channel by insulin in pancreatic-cells / E. Hisanaga [et al.] // Diabetes. – 2009. – Vol. 58, N 1. – P. 174–184. https://doi.org/10.2337/db08-0862

37. Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I / M. Kanzaki [et al.] // Nat. Cell Biol. – 1999. – Vol. 1, N 3. – Р. 165–170. https://doi.org/10.1038/11086

38. Insulin elicits a ROS-activated and an IP3-dependent Ca2+ release, which both impinge on GLUT4 translocation / A. Contreras-Ferrat [et al.] // J. Cell Sci. – 2014. – Vol. 127, N 9. – Р. 1911–1923. https://doi.org/10.1242/jcs.138982


Для цитирования:


Гусакова Е.А., Городецкая И.В. Влияние глюкокортикоидных гормонов на функцию щитовидной железы. Известия Национальной академии наук Беларуси. Серия медицинских наук. 2021;18(1):117-126. https://doi.org/10.29235/1814-6023-2021-18-1-117-126

For citation:


Gusakova E.A., Gorodetskaya I.V. Influence of glucocorticoid hormones on the thyroid gland function. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2021;18(1):117-126. (In Russ.) https://doi.org/10.29235/1814-6023-2021-18-1-117-126

Просмотров: 60


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)