Preview

Proceedings of the National Academy of Sciences of Belarus, Medical series

Advanced search

NEURO-INDUCED MESENCHYMAL STEM CELLS IN THE TREATMENT OF NERVOUS SYSTEM DISEASES

Abstract

Mesenchymal stem cells (MSCs) have long been viewed as a promising therapeutic agent for incurable CNS disorders. This review covers therapeutic applications of MSCs induced for a non- conventional neural differentiation. Presented are the data on MSCs neural induction in vitro, lessons from animal models, and very recent results of clinical trials with neurally induced MSCs in Belarus and worldwide in patients suffering from amyotrophic lateral sclerosis and epilepsy

About the Author

А. V. SHAKHBAZAU
University of Calgary
Canada


References

1. Bjorklund, A. Neurobiology. Better cells for brain repair / A. Bjorklund // Nature. – 1993. – Vol. 362. – P. 414–415.

2. Autologous mesenchymal stem cell transplantation in stroke patients / O. Y. Bang [et al.] // Ann. Neurol. – 2005. – Vol. 57. – P. 874–882.

3. Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium / D. G. Katritsis [et al.] // Catheter. Cardiovasc. Interv. – 2005. – Vol. 65. – P. 321–329.

4. Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH) / O. N. Koc [et al.] // Bone Marrow Transplant. – 2002. – Vol. 30. – P. 215–222.

5. Fibroblast precursors in normal and irradiated mouse hematopoietic organs / A. J. Friedenstein [et al.] // Exp. Hematol. – 1976. – Vol. 4. – P. 267–274.

6. Human mesenchymal stem cells express neural genes, suggesting a neural predisposition / N. R. Blondheim [et al.] // Stem Cells Dev. – 2006. – Vol. 15. – P. 141–164.

7. Xenograft of human umbilical mesenchymal stem cells from Wharton’s jelly as a potential therapy for rat pilocarpineinduced epilepsy / P. Y. Huang [et al.] // Brain Behav. Immun. – 2015.

8. Transplantation of human umbilical mesenchymal stem cells from Wharton’s jelly after complete transection of the rat spinal cord / C. C. Yang [et al.] // PLoS. One. – 2008. – Vol. 3. – P. e3336.

9. The imbalanced expression of adenosine receptors in an epilepsy model corrected using targeted mesenchymal stem cell transplantation / K. Huicong [et al.] // Mol. Neurobiol. – 2013. – Vol. 48. – P. 921–930.

10. Early transplantation of bone marrow mononuclear cells promotes neuroprotection and modulation of inflammation after status epilepticus in mice by paracrine mechanisms / M. M. Leal [et al.] // Neurochem. Res. – 2014. – Vol. 39. – P. 259– 268.

11. Prevention of seizures and reorganization of hippocampal functions by transplantation of bone marrow cells in the acute phase of experimental epilepsy / Z. S. Costa-Ferro [et al.] // Seizure. – 2010. – Vol. 19. – P. 84–92.

12. Transplantation of bone marrow mononuclear cells decreases seizure incidence, mitigates neuronal loss and modulates pro-inflammatory cytokine production in epileptic rats / Z. S. Costa-Ferro [et al.] // Neurobiol. Dis. – 2012. – Vol. 46. – P. 302–313.

13. Antiepileptic and neuroprotective effects of human umbilical cord blood mononuclear cells in a pilocarpine-induced epilepsy model / Z. S. Costa-Ferro [et al.] // Cytotechnology. – 2014. – Vol. 66. – P. 193–199.

14. Trans-differentiation of the adipose tissue-derived stem cells into neuron-like cells expressing neurotrophins by selegiline / A. Abdanipour [et al.] // Iran Biomed. J. – 2011. – Vol. 15. – P. 113–121.

15. Genetically engineered bone marrow mesenchymal stem cells improve functional outcome in a rat model of epilepsy / Q. Long [et al.] // Brain Res. – 2013. – Vol. 1532. – P. 1–13.

16. Chimerization of astroglial population in the lumbar spinal cord after mesenchymal stem cell transplantation prolongs survival in a rat model of amyotrophic lateral sclerosis / C. Boucherie [et al.] // J. Neurosci. Res. – 2009. – Vol. 87. – P. 2034– 2046.

17. Long-term survival in amyotrophic lateral sclerosis: a population-based study / E. Pupillo [et al.] // Ann. Neurol. – 2014. – Vol. 75. – P. 287–297.

18. Analysis of amyotrophic lateral sclerosis as a multistep process: a population-based modelling study / A. Al-Chalabi [et al.] // Lancet Neurol. – 2014. – Vol. 13. – P. 1108–1113.

19. Cell-replacement therapy with stem cells in neurodegenerative diseases / V. Silani [et al.] // Curr. Neurovasc. Res. – 2004. – Vol. 1. – P. 283–289.

20. The past, present and future of stem cell clinical trials for ALS / G. M. Thomsen [et al.] // Exp. Neurol. – 2014. – Vol. 262. – Pt B. – P. 127–137.

21. Transplantation of mesenchymal stem cells in ALS / L. Mazzini [et al.] // Prog. Brain Res. – 2012. – Vol. 201. – P. 333–359.

22. Brain and spinal cord affected by amyotrophic lateral sclerosis induce differential growth factors expression in rat mesenchymal and neural stem cells / C. Nicaise [et al.] // Neuropathol. Appl. Neurobiol. – 2011. – Vol. 37. – P. 179–188.

23. Intravenous mesenchymal stem cells improve survival and motor function in experimental amyotrophic lateral sclerosis / A. Uccelli [et al.] // Mol. Med. – 2012. – Vol. 18. – P. 794–804.

24. Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis / A. Vercelli [et al.] // Neurobiol. Dis. – 2008. – Vol. 31. – P. 395–405.

25. Mesenchymal stromal cells prolong the lifespan in a rat model of amyotrophic lateral sclerosis / S. Forostyak [et al.] // Cytotherapy. – 2011. – Vol. 13. – P. 1036–1046.

26. Human mesenchymal stromal cells ameliorate the phenotype of SOD1-G93A ALS mice / C. P. Zhao [et al.] // Cytotherapy. – 2007. – Vol. 9. – P. 414–426.

27. Human mesenchymal stromal cell transplantation modulates neuroinflammatory milieu in a mouse model of amyotrophic lateral sclerosis / M. Boido [et al.] // Cytotherapy. – 2014. – Vol. 16. – P. 1059–1072.

28. Dual transplantation of human neural stem cells into cervical and lumbar cord ameliorates motor neuron disease in SOD1 transgenic rats / L. Xu [et al.] // Neurosci. Lett. – 2011. – Vol. 494. – P. 222–226.

29. Positive effect of transplantation of hNT neurons (NTera 2/D1 cell-line) in a model of familial amyotrophic lateral sclerosis / S. Garbuzova-Davis [et al.] // Exp. Neurol. – 2002. – Vol. 174. – P. 169–180.

30. Sertoli cells improve survival of motor neurons in SOD1 transgenic mice, a model of amyotrophic lateral sclerosis / R. Hemendinger [et al.] // Exp. Neurol. – 2005. – Vol. 196. – P. 235–243.

31. Improvement of the pilocarpine epilepsy model in rat using bone marrow stromal cell therapy / A. Abdanipour [et al.] // Neurol. Res. – 2011. – Vol. 33. – P. 625–632.

32. Concise Review: Prospects of Bone Marrow Mononuclear Cells and Mesenchymal Stem Cells for Treating Status Epilepticus and Chronic Epilepsy / S. Agadi [et al.] // Stem Cells. – 2015. – Vol. 33. – P. 2093–2103.

33. Mesenchymal stem cells protect CNS neurons against glutamate excitotoxicity by inhibiting glutamate receptor expression and function / A. Voulgari-Kokota [et al.] // Exp. Neurol. – 2012. – Vol. 236. – P. 161–170.

34. Epilepsy: Novel therapeutic targets / A. P. Anovadiya [et al.] // J. Pharmacol. harmacother. – 2012. – Vol. 3. – P. 112–117.

35. Stem cell treatment in Amyotrophic Lateral Sclerosis / L. Mazzini [et al.] // J. Neurol. Sci. – 2008. – Vol. 265. – P. 78–83.

36. Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study / L. Mazzini [et al.] // Cytotherapy. – 2012. – Vol. 14. – P. 56–60.

37. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis / D. Karussis [et al.] // Arch. Neurol. – 2010. – Vol. 67. – P. 1187–1194.

38. Neurotrophic bone marrow cellular nests prevent spinal motoneuron degeneration in amyotrophic lateral sclerosis patients: a pilot safety study / M. Blanquer [et al.] // Stem Cells. – 2012. – Vol. 30. – P. 1277–1285.

39. Phase I trial of repeated intrathecal autologous bone marrow-derived mesenchymal stromal cells in amyotrophic lateral sclerosis / K. W. Oh [et al.] // Stem Cells Transl. Med. – 2015. – Vol. 4. – P. 590–597.

40. Migration of neurotrophic factors-secreting mesenchymal stem cells toward a quinolinic acid lesion as viewed by magnetic resonance imaging / O. Sadan [et al.] // Stem Cells. – 2008. – Vol. 26. – P. 2542–2551.

41. Differentiated mesenchymal stem cells for sciatic nerve injury / M. Dadon-Nachum [et al.] // Stem Cell Rev. – 2011. – Vol. 7. – P. 664–671.

42. Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells / A. Hermann [et al.] // J. Cell Sci. – 2004. – Vol. 117. – P. 4411–4422.

43. Neural differentiation potential of peripheral blood- and bone-marrow-derived precursor cells / S. Kim [et al.] // Brain Res. – 2006. – Vol. 1123. – P. 27–33.

44. Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells / X. Long [et al.] // Stem Cells Dev. – 2005. – Vol. 14. – P. 65–69.

45. Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? / P. Lu [et al.] // J. Neurosci. Res. – 2004. – Vol. 77. – P. 174–191.

46. Adult bone marrow stromal cells differentiate into neural cells in vitro / J. Sanchez Ramos [et al.] // Exp. Neurol. – 2000. – Vol. 164. – P. 247–256.

47. Adult rat and human bone marrow stromal cells differentiate into neurons / D. Woodbury [et al.] // J. Neurosci. Res. – 2000. – Vol. 61. – P. 364–370.

48. Neural differentiation of human mesenchymal stem cells: evidence for expression of neural markers and eag K+ channel types / K. Mareschi [et al.] // Exp. Hematol. – 2006. – Vol. 34. – P. 1563–1572.

49. Neural differentiation and incorporation of bone marrow-derived multipotent adult progenitor cells after single cell transplantation into blastocyst stage mouse embryos / C. D. Keene [et al.] // Cell Transplant. – 2003. – Vol. 12. – P. 201–213.

50. Neural induction of adult bone marrow and umbilical cord stem cells / X. R. Ortiz- Honzalez [et al.] // Curr. Neurovasc. Res. – 2004. – Vol. 1. – P. 207–213.

51. Plasticity of human mesenchymal stem cell phenotype and expression profile under neurogenic conditions / A. V. Shakhbazau [et al.] // Bull. Exp. Biol. Med. – 2009. – Vol. 147. – P. 513–516.

52. Neurogenic induction of human mesenchymal stem cells in fibrin 3D matrix / A. V. Shakhbazau [et al.] // Bull. Exp. Biol. Med. – 2011. – Vol. 150. – P. 547–550.

53. Coaxing bone marrow stromal mesenchymal stem cells towards neuronal differentiation: progress and uncertainties / Y. Chen [et al.] // Cell Mol. Life Sci. – 2006. – Vol. 63. – P. 1649–1657.

54. Neurogenic potential of human mesenchymal stem cells revisited: analysis by immunostaining, time-lapse video and microarray / N. Bertani [et al.] // J. Cell Sci. – 2005. – Vol. 118. – P. 3925–3936.

55. Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation / J. Deng [et al.] // Stem Cells. – 2006. – Vol. 24. – P. 1054– 1064.

56. Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells / T. Tondreau [et al.] // BMC. Genomics. – 2008. – Vol. 9. – P. 166.

57. The effects of neuronal induction on gene expression profile in bone marrow stromal cells (BMSC) – a preliminary study using microarray analysis / S. Yamaguchi [et al.] // Brain Res. – 2006. – Vol. 1087. – P. 15–27.

58. Matrix elasticity directs stem cell lineage specification / A. J. Engler [et al.] // Cell. – 2006. – Vol. 126. – P. 677–689.

59. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering / G. Jin [et al.] // Acta Biomater. – 2011. – Vol. 7. – P. 3113–3122. 60. Biodegradable fibrous scaffolds with tunable properties formed from photo-cross- inkable poly(glycerol sebacate) / J. Ifkovits L. [et al.] // ACS Appl. Mater. Interfaces. – 2009. – Vol. 1. – P. 1878–1886.

60. Engineered microenvironments for controlled stem cell differentiation / J. A. Burdick [et al.] // Tissue Eng Part A. – 2009. – Vol. 15. – P. 205–219.

61. Vascular differentiation of bone marrow stem cells is directed by a tunable three- dimensional matrix / G. Zhang [et al.] // Acta Biomater. – 2010. – Vol. 6. – P. 3395–3403.

62. Extracellular matrix elasticity directs stem cell differentiation / A. J. Engler [et al.] // J. Musculoskelet. Neuronal. Interact. – 2007. – Vol. 7. – P. 335.

63. Induction of pluripotent stem cells from adult human fibroblasts by defined factors / K. Takahashi [et al.] // Cell. – 2007. – Vol. 131. – P. 861–872.

64. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation / M. Dezawa [et al.] // J. Clin. Invest. – 2004. – Vol. 113. – P. 1701–1710.

65. Brain from bone: efficient “meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent / J. Kohyama [et al.] // Differentiation. – 2001. – Vol. 68. – P. 235–244.

66. Modification of the brain-derived neurotrophic factor gene: a portal to transform mesenchymal stem cells into advantageous engineering cells for neuroregeneration and neuroprotection / L. X. Zhao [et al.] // Exp. Neurol. – 2004. – Vol. 190. – P. 396–406.

67. Combination of adenoviral vector-mediated neurotrophin-3 gene transfer and retinoic acid promotes adult bone marrow cells to differentiate into neuronal phenotypes / W. Zhang [et al.] // Neurosci. Lett. – 2006. – Vol. 408. – P. 98–103.

68. Strain-dependent embryonic lethality in mice lacking the retinoblastoma-related p130 gene / J. E. LeCouter [et al.] // Development. – 1998. – Vol. 125. – P. 4669–4679.

69. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis / E. Y. Lee [et al.] // Nature. – 1992. – Vol. 359. – P. 288–294.


Review

For citations:


SHAKHBAZAU А.V. NEURO-INDUCED MESENCHYMAL STEM CELLS IN THE TREATMENT OF NERVOUS SYSTEM DISEASES. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2016;(3):107-116. (In Russ.)

Views: 520


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)