Preview

Proceedings of the National Academy of Sciences of Belarus, Medical series

Advanced search

Biocompatibility of boron-enriched pyrolitic carbon

https://doi.org/10.29235/1814-6023-2024-21-4-271-281

Abstract

The Institute for Nuclear Problems of the Belarusian State University (INP BSU) has developed equipment  and optimized the technology for synthesizing boron-doped pyrocarbon, a material for application in heart valve endoprostheses.

The purpose of this work was to evaluate the general and biochemical blood tests, mass coefficients of animal organs  and the dynamics of reactions of rat tissues to implantation of pyrocarbon material in the subcutaneous tissues of the interscapular region.

 Animals were monitored for 90 days. According to the morphometric data, the boron-doped pyrocarbon, synthesized  in INP BSU, was found to be non-irritating to the tissue in comparison with the control sample during all periods of observation. There was no significant effect of implantation of pyrolytic carbon on the parameters of the blood general and biochemical  analysis in rats compared with healthy animals. The results of necropsy showed that the mass of organs and mass coefficients  of animals did not deviate from the physiological norm during different periods of pyrocarbon sample implantation.

Thus, the boron-doped pyrocarbon material synthesized in INP BSU can be used for manufacturing heart valve endoprostheses.

About the Authors

M. I. Demidenko
Institute for Nuclear Problems of the Belarusian State University
Belarus

Marina I. Demidenko – Head of the Laboratory

11, Bobruiskaya Str., 220006, Minsk



I. P. Zhavoronok
Institute for Nuclear Problems of the Belarusian State University
Belarus

Irina P. Zhavoronok – Ph. D. (Biol.), Head of the Laboratory

28, Akademicheskaya Str., 220072, Minsk



D. V. Adamchuk
Institute for Nuclear Problems of the Belarusian State University
Belarus

Dmitry V. Adamchuk – Ph. D. (Physics and Mathematics),  Senior Researcher

11, Bobruiskaya Str., 220006, Minsk



T A. Kulahava
Institute for Nuclear Problems of the Belarusian State University
Belarus

Tatsiana A. Kulahava – Ph. D. (Biol.), Associate Professor, Head of the Sector

11, Bobruiskaya Str., 220006, Minsk



O. A. Antipova
Institute for Nuclear Problems of the Belarusian State University
Belarus

Olga A. Antipova – Researcher

28, Akademicheskaya Str., 220072, Minsk



A. A. Basalai
Institute for Nuclear Problems of the Belarusian State University
Belarus

Anastasia A. Basalai – Researcher

28, Akademicheskaya Str., 220072, Minsk



T. E. Kuznetsova
Institute for Nuclear Problems of the Belarusian State University
Belarus

Tatyana E. Kuznetsova – Ph. D. (Biol.), Leading Researcher

28, Akademicheskaya Str., 220072, Minsk



S. A. Maksimenko
Institute for Nuclear Problems of the Belarusian State University
Belarus

Sergey A. Maksimenko – D. Sc. (Physics and Mathe- matics), Professor, Director

 



References

1. More R. B., Haubold A. D., Bokros J. C. Pyrolytic carbon for long-term medical implants. Biomaterials Science. Oxford, 2013, pp. 209–222. https://doi.org/10.1016/B978-0-08-087780-8.00023-1

2. Bokros J. C. Carbon biomedical devices. Carbon, 1977, vol. 15, no. 6, pp. 353–371. https://doi.org/10.1016/0008-6223(77)90324-4

3. Salkeld S. L., Patron L. P., Lien J. C., Cook S. D., Jones D. G. Biological and functional evaluation of a novel pyrolytic carbon implant for the treatment of focal osteochondral defects in the medial femoral condyle: assessment in a canine model. Journal of Orthopaedic Surgery and Research, 2016, vol. 11, art. 155. https://doi.org/10.1186/s13018-016-0488-5

4. Mayanov E., Zolkin P., Aberyakhimov Kh. Carbon materials in surgery. Medicina celevye proekty = Medicine targeted projects, 2015, no. 21, pp. 1–12 (in Russian).

5. Sadeghi H. Dysfonctions des prothèses valvulaires cardiaques et leur traitement chirurgical [Dysfunctions of heart valve prostheses and their surgical treatment]. Schweizerische Medizinische Wochenschrift, 1987, vol. 117, no. 43, pp. 1665–1670 (in French).

6. Ritchie R. O., Dauskardt R. H., Yu W. K., Brendzel A. M. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications. Journal of Biomedical Materials Research, 1990, vol. 24, no. 2, pp. 189–206. https://doi.org/10.1002/jbm.820240206

7. Beavan L. A., James D. W., Kepner J. L. Evaluation of fatigue in pyrolite carbon. Bioceramics. Oxford, 1993, vol. 6, pp. 205–210.

8. Beckenbaugh R. D., Klawitter J., Cook S. Osseointegration and mechanical stability of pyrocarbon and titanium hand implants in a load-bearing in vivo model for small joint arthroplasty. Journal of Hand Surgery (American volume), 2006, vol. 31, no. 7, pp. 1240–1241. https://doi.org/10.1016/j.jhsa.2006.05.009

9. Herren D. B., Schindele S., Goldhahn J., Simmen B. R. Problematic bone fixation with pyrocarbon implants in proximal interphalangeal joint replacement: short-term results. Journal of Hand Surgery (American volume), 2006, vol. 31, no. 6, pp. 643–651. https://doi.org/10.1016/j.jhsb.2006.08.004

10. Cook S. D., Beckenbaugh R. D., Redondo J., Popich L. S., Klawitter J. J., Linscheid R. L. Long-term follow-up of pyrocarbon metacarpophalangeal implants. Journal of Bone and Joint Surgery (American volume), 1999, vol. 81, no. 5, pp. 635–648. https://doi.org/10.2106/00004623-199905000-00005

11. Kolesov S. V., Kolbovskii D. A., Rerikh V. V., Vishnevskii A. A., Basankin I. V., Skorina I. V., Kaz’min A. I., Pereverzev V. S., Panteleev A. A. Results of surgical treatment of vertebral fractures using nanostructured carbon implants (multicenter study). XI Vserossiiskii s’’ezd travmatologov-ortopedov: materialy konferentsii, Sankt-Peterburg, 11–13 aprelya 2018 goda. Tom 3 [XI All-Russian Congress of Traumatologists and Orthopedists: Conference Proceedings, St. Petersburg, April 11–13, 2018. Vol. 3]. Saint Petersburg, 2018, pp. 473–475 (in Russian).

12. Mitroshin A. N., Kibitkin A. S., Ksenofontov D. A., Kosmynin D. A. Experimental substantiation of the advantages of a friction pair of a pyrocarbon endoprosthesis of the hip joint. XI Vserossiiskii s’’ezd travmatologov-ortopedov: materialy konferentsii, Sankt-Peterburg, 11–13 aprelya 2018 goda. Tom 3 [XI All-Russian Congress of Traumatologists and Orthopedists: Conference Proceedings, St. Petersburg, April 11–13, 2018. Vol. 3]. Saint Petersburg, 2018, pp. 161–162 (in Russian).

13. Demidenko M. I., Adamchuk D. V., Rusanov A. P., Sirotkin S. V., Ivan’ko L. V., Maksimenko S. A. Boron-enriched pyrolitic carbon: material for biomedical and engineering-technical applications. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2023, vol. 67, no. 3, pp. 250–256 (in Russian).

14. Demidenko M., Adamchuk D., Liubimau A., Uglov V., Ishchenko A., Chekan M., Khama M., Maksimenko S. High temperature synthesis and material properties of boron-enriched balk pyrolytic carbon. Materials Science and Engineering B, 2024, vol. 307, p. 117491. https://doi.org/10.1016/j.mseb.2024.117491

15. State Standard 31618.1-2012. Prosthetic heart valves. Part 1: General specifications and test methods. Moscow, Standartinform Publ., 2013. 28 p. (in Russian).

16. Sanitary rules and norms 2.1.2.12–18–2006 “Device, equipment and maintenance of experimental biological clinics (vivariums)”: approved by the Decree of the Chief State Sanitary Doctor of the Republic of Belarus, No. 131, October 31, 2006 (in Russian).

17. Mironov A. N. (ed.). A guide to preclinical drug research. Moscow, Grif i K Publ., 2012. 944 p. (in Russian).

18. European convention for the protection of vertebrate animals used for experimentation and other scientific purposes, n 123 of March 18, 1986; protocol of amendment to the european convention for the protection of vertebrate animals used for experimental and other scientific purposes. Strasbourg, June 22, 1998. 48 p.

19. Avtandilov G. G. Medical morphometry. Moscow, Meditsina Publ., 1990. 384 p. (in Russian).

20. State Standard 10993-6-2011. Medical products. Evaluation of the biological effect of medical devices. Part 6. Local action studies after implantation. Moscow, Standartinform Publ., 2013. 23 p. (in Russian).

21. Glazkova S. E., Kugaev O. L., Luk’yanenok D. M., Novikova I. N., Parkhamovich V. N., Turkovskii G. S. [et al.]. Concise reference book of laboratory researches of IOOO “Sinevo”. Minsk, Smeltok Publ., 2016. 630 p. (in Russian).


Review

For citations:


Demidenko M.I., Zhavoronok I.P., Adamchuk D.V., Kulahava T.A., Antipova O.A., Basalai A.A., Kuznetsova T.E., Maksimenko S.A. Biocompatibility of boron-enriched pyrolitic carbon. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2024;21(4):271-281. (In Russ.) https://doi.org/10.29235/1814-6023-2024-21-4-271-281

Views: 232


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)