Influence of mutations caused by radiation exposure on the bilirubin binding sites of human serum albumin
https://doi.org/10.29235/1814-6023-2021-18-1-46-57
Abstract
In this article we analyze the bilirubin binding sites of human serum albumin from the point of view of the secondary structure instability, as well as the effect of amino acid substitutions caused by radiation exposure on the ability of albumin to bind bilirubin-IX-alpha. Based on calculations of binding energy and inhibition constants of bilirubin-albumin complexes before and after the amino acid substitutions, it was found that amino acid substitutions have different effects on the ability of human serum albumin to bind bilirubin. Amino acid substitutions Asp269-Gly269 (Nagasaki-1), Glu354-Lys354 (Hiroshima-1), Asp375-Asn375 (Nagasaki-2) reduce the binding free energy of bilirubin with human serum albumin, and the amino acid substitutions His3-Gln3 (Nagasaki-3) and Glu382-Lys382 (Hiroshima-2) increase it during molecular docking with the corresponding areas of the protein surface. The inhibition constants are significantly higher than with known binding sites. In general, mutations caused by radiation exposure cannot effect on bilirubin binding sites of human serum albumin, since the amino acid residues that are replaced do not interact with the amino acid residues from the binding sites (Leu115, Arg117, Phe134, Tyr138, Ile142, Phe149, Phe157, Tyr161, Arg186, Lys190, Lys240, Arg222). All amino acid residues from known binding sites are located in stable elements of the secondary structure of human serum albumin.
The data obtained are important for understanding the impact of radiation exposure on the development of bilirubin encephalopathy in the population of the Chernobyl region and Japan.
About the Authors
V. V. PoboinevBelarus
Victor V. Poboinev – Postgraduate student, Assistant
83, Dzerzhynski Ave., 220116, Minsk, Republic of Belarus
V. V. Khrustalev
Belarus
Vladislav V. Khrustalev – Associate Professor, Head of the Department
83, Dzerzhynski Ave., 220116, Minsk, Republic of Belarus
A. N. Stojarov
Belarus
Aliaksandr N. Stojarov – Professor, Head of the Department
83, Dzerzhynski Ave., 220116, Minsk, Republic of Belarus
T. A. Khrustaleva
Belarus
Tatyana A. Khrustaleva – Senior Researcher
28, Akademicheskaya Str., 220072, Minsk, Republic of Belarus
References
1. Caraceni P., Domenicali M., Tovoli A., Napoli L., Ricci C. S., Tufoni M., Bernardi M. Clinical indications for the albumin use: still a controversial issue. European Journal of Internal Medicine, 2013, vol. 24, no. 8, pp. 721–728. https://doi.org/10.1016/j.ejim.2013.05.015
2. He X. M., Carter D. C. Atomic structure and chemistry of human serum albumin. Nature, 1992, vol. 358, no. 6383, pp. 209–215. https://doi.org/10.1038/358209a0
3. Colmenarejo G. In silico prediction of drug-binding strengths to human serum albumin. Medicinal Research Reviews, 2003, vol. 23, no. 3, pp. 275–301. https://doi.org/10.1002/med.10039
4. Tkachenko A. K., Ustinovich A. A., Romanova O. N., Klyuchareva A. A., Novak L. V. Jaundice of the neonatal period: a teaching aid. Minsk, Belarusian State Medical University, 2017. 68 р. (in Russian).
5. Arai K., Madison J., Huss K., Ishioka N., Satoh C., Fujita M., Neel J. V., Sakurabayashi I., Putnam F. W. Point substitutions in Japanese alloalbumins. Proceedings of the National Academy of Sciences of the United States of America, 1989, vol. 86, no. 16, pp. 6092–6096. https://doi.org/10.1073/pnas.86.16.6092
6. Khrustalev V. V., Khrustaleva T. A., Poboinev V. V. Amino acid content of beta strands and alpha helices depends on their flanking secondary structure elements. Biosystems, 2018, vol. 168, pp. 45–54. https://doi.org/10.1016/j.biosystems.2018.04.002
7. Kim S., Chen J., Cheng T., Gindulyte A., He J., He S. [et al.]. PubChem 2019 update: improved access to chemical data. Nucleic Acids Research, 2019, vol. 47, no. D1, pp. D1102–D1109. https://doi.org/10.1093/nar/gky1033
8. Bikadi Z., Hazai E. Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. Journal of Cheminformatics, 2009, vol. 1, art. 15. https://doi.org/10.1186/1758-2946-1-15
9. Zunszain P. A., Ghuman J., McDonagh A. F., Curry S. Crystallographic analysis of human serum albumin complexed with 4Z,15E-bilirubin-IXalpha. Journal of Molecular Biology, 2008, vol. 381, no. 2, pp. 394–406. https://doi.org/10.1016/j.jmb.2008.06.016
10. Salentin S., Schreiber S., Haupt V. J., Adasme M., Schroeder M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Research, 2015, vol. 43, no. W1, pp. W443–W447. https://doi.org/10.1093/nar/gkv315
11. Poboinev V. V., Khrustalev V. V., Khrustaleva T. A. Structural variability of alpha-helical proteins. Innovatsionnye tekhnologii v farmatsii: sbornik nauchnykh trudov. Vypusk 6. Materialy Vserossiiskoi nauchno-prakticheskoi konferentsii c mezhdunarodnym uchastiem, posvyashchennoi 100-letiyu so dnya obrazovaniya Irkutskogo gosudarstvennogo meditsinskogo universiteta (Irkutsk, 14–15 iyunya 2019 goda) [Innovative technologies in pharmacy: collection of scientific papers. Issue 6. Proceedings of the All-Russian scientific and practical conference with international participation, dedicated to the 100th anniversary of the founding of Irkutsk State Medical University (Irkutsk, June 14–15, 2019)]. Irkutsk, 2019, pp. 118–127 (in Russian).
12. Minchiotti L., Galliano M., Zapponi M. C., Tenni R. The structural characterization and bilirubin-binding properties of albumin Herborn, a [Lys240→Glu] albumin mutant. European. Journal of Biochemistry, 1993, vol. 214, no. 2, pp. 437–444. https://doi.org/10.1111/j.1432-1033.1993.tb17939.x
13. Jacobsen J. Studies of the affinity of human serum albumin for binding of bilirubin at different temperatures and ionic strength. International Journal of Peptide and Protein Research, 1977, vol. 9, no. 3, pp. 235–239. https://doi.org/10.1111/j.1399-3011.1977.tb03486.x
Review
For citations:
Poboinev V.V., Khrustalev V.V., Stojarov A.N., Khrustaleva T.A. Influence of mutations caused by radiation exposure on the bilirubin binding sites of human serum albumin. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2021;18(1):46-57. (In Russ.) https://doi.org/10.29235/1814-6023-2021-18-1-46-57