Preview

Proceedings of the National Academy of Sciences of Belarus, Medical series

Advanced search

Modern concepts of the osteogenic potential of mesenchymal stem cells and the creation of bioengineering structures for bone tissue repair

https://doi.org/10.29235/1814-6023-2020-17-4-500-508

Abstract

The following review summarizes the latest studies on in vitro osteogenic mesenchymal stem cell differentiation and selection of scaffolds that can maintain the viability and functional activity of these cells for bone tissue repair. In the last time, there have been investigated a lot of issues such as the stimulation and development osteogenic differentiation of MSCs, the growth factors – inducers of osteogenesis in MSCs, the creation of 3D constructions of cells in different scaffolds. A deeper understanding of the osteogenic differentiation mechanisms can result in the novel therapeutic opportunities of bone disease treatment. Special attention is given to materials for scaffold designs and template–cell interactions, which is of great importance for the structuring and functioning of an engineered tissue.

About the Author

H. A. Zhernasechanka
Republican Research Center for Pediatric Oncology, Hematology and Immunology
Russian Federation

Hanna A. Zhernasechanka – Researcher

43, Frunzenskaya Str., v. Borovliany, 223053, Minsk Region



References

1. Hanna H., Mir L. M. In vitro osteoblastic differentiation of mesenchymal stem cells generates cell layers with distinct properties. Stem Cell Research & Therapy, 2018, vol. 9, no. 1, art. 203. https://doi.org/10.1186/s13287-018-0942-x

2. Friedenstein A. J., Chailakhjan R. K. The development of fibroblast colonies in monolayer cultures of Guinea-pig bone marrow and spleen cells. Cell Proliferation, 1970, vol. 3, no. 4, pp. 393–403. https://doi.org/10.1111/j.1365-2184.1970.tb00347.x

3. Friedenstein A. J., Petrakova K. V., Kurolesova A. I., Frolova G. P. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 1968, vol. 6, no. 2, pp. 230–247.

4. Quarles L. D., Yohay D. A., Lever L. W., Caton R., Wenstrup R. J. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. Journal of Bone and Mineral Research, 1992, vol. 7, no. 6, pp. 683–692. https://doi.org/10.1002/jbmr.5650070613

5. Kamilov F. Kh., Farshatova E. R., Enikeev D. A. Cell-molecular mechanisms of bone tissue remodeling and its regulation. Fundamental’nye issledovaniya [Fundamental research], 2014, no. 7-4, pp. 836–842 (in Russian).

6. Vater C., Kasten P., Stiehler M. Culture media for the differentiation of mesenchymal stromal cells. Acta Biomaterialia, 2011, vol. 7, no. 2, pp. 463–477. https://doi.org/10.1016/j.actbio.2010.07.037

7. Langenbach F., HandschelJ. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Research and Therapy, 2013, vol. 4, no. 117. https://doi.org/10.1186/scrt328

8. Granéli C., Thorfve A., Ruetschi U., Brisby H., Thomsen P., Lindahl A., Karlsson C. Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach. Stem Cell Research, 2014, vol. 12, no. 1, pp. 153–165. https://doi.org/10.1016/j.scr.2013.09.009

9. Tian Y., Cui L.-H., Xiang S.-Y., Xu W.-X., Chen D.-Ch., Fu R., Zhou Ch.-L., Liu X.-Q., Wang Y.-F., Wang X.-T. Osteoblastoriented differentiation of BMSCs by co-culturing with composite scaffolds constructed using silicon-substituted calcium phosphate, autogenous fine particulate bone powder and alginate in vitro. Oncotarget, 2017, vol. 8, no. 51, pp. 88308–88319. https://doi.org/10.18632/oncotarget.19015

10. Rodríguez P., González M., Ríos S., Cambiazo V. Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation. Journal of Cellular Biochemistry, 2004, vol. 93, no. 4, pp. 721–731. https://doi.org/10.1002/jcb.20234

11. Zhernosechenko A., Isaikina Ya., Mikhalevskaya T. The choice of scaffold and conditions for mesenchymal stem cells differentiation for the bone repair. Nauka i innovatsii [Science and innovation], 2019, no. 5, pp. 58–61 (in Russian).

12. Hutchings G., Moncrieff L., Dompe C., Janowicz K., Sibiak R., Bryja A. [et al.]. Bone regeneration, reconstruction and use of osteogenic cells from basic knowledge, animal models to clinical trials. Journal of Clinical Medicine, 2020, vol. 9, no. 1, art. 139. https://doi.org/10.3390/jcm9010139

13. Bruderer M., Richards R. G,. Alini M., Stoddart M. J. Role and regulation of Runx2 in osteogenesis. European Cells and Materials, 2014, vol. 28, pp. 269–286. https://doi.org/10.22203/ecm.v028a19

14. Stein G. S., Lian J. B., van Wijnen A. J., Stein J. L., Montecino M., Javed A., Zaidi S. K., Young D. W., Choi J.-Y., Pockwinse S. M. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene, 2004, vol. 23, pp. 4315–4329. https://doi.org/10.1038/sj.onc.1207676

15. Lee M. H., Javed A., Kim H. J., Shin H. I., Gutierrez S., Choi J. Y., Rosen V., Stein J. L., van Wijnen A. J., Stein G. S., Lian J. B., Ryoo H. M. Transient upregulation of CBFA1 in response to bone morphogenetic protein-2 and transforming growth factor beta1 in C2C12 myogenic cells coincides with suppression of the myogenic phenotype but is not suffcient for osteoblast differentiation. Journal of Cellular Biochemistry, 1999, vol. 73, no. 1, pp. 114–125.

16. Liu W., Toyosawa S., Furuichi T., Kanatani N., Yoshida C., Liu Y., Himeno M., Narai S., Yamaguchi A., Komori T. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. Journal of Cell Biology, 2001, vol. 155, pp. 157–166. https://doi.org/10.1083/jcb.200105052

17. Loebel C., Czekanska E. M., Bruderer M., Salzmann G., Alini M., Stoddart M. J. In vitro osteogenic potential of human mesenchymal stem cells is predicted by Runx2/Sox9 ratio. Tissue Engineering. Part A, 2015, vol. 21, no. 1–2, pp. 115–123. https://doi.org/10.1089/ten.tea.2014.0096

18. Akiyama H., Kim J.-E., Nakashima K., Balmes G., Iwai N., Deng J. M., Zhang Z., Martin J. F., Behringer R. R., Nakamura T., de Crombrugghe B. Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proceedings of the National Academy of Sciences, 2005, vol. 102, no. 41, pp. 14665–14670. https://doi.org/10.1073/pnas.0504750102

19. Zhou G., Zheng Q., Engin F., Munivez E., Chen Y., Sebald E., Krakow D., Lee B. Dominance of Sox9 function over Runx2 during skeletogenesis. Proceedings of the National Academy of Sciences, 2006, vol. 103, no. 50, pp. 19004–19009. https://doi.org/10.1073/pnas.0605170103

20. Yoshida C. A., Komori H., Maruyama Z., Miyazaki T., Kawasaki K., Furuichi T. [et al.] SP7 inhibits osteoblast differentiation at a late stage in mice. Public Library of Science One, 2012, vol. 7, no. 3, р. e32364. https://doi.org/10.1371/journal.pone.0032364

21. Holleville N., Quilhac A., Bontoux M., Monsoro-Burq A.-H. BMP signals regulate Dlx5 during early avian skull development. Developmental Biology, 2003, vol. 257, no. 1, pp. 177–189. https://doi.org/10.1016/S0012-1606(03)00059-9

22. Hassan M. Q., Tare R. S., Lee S. H., Mandeville M., Morasso M. I., Javed A., van Wijnen A. J., Stein J. L., Stein G. S., Lian J. B. BMP2 commitment to the osteogenic lineage involves activation of Runx2 by DLX3 and a homeodomain transcriptional network. Journal of Biological Chemistry, 2006, vol. 281, no. 52, pp. 40515–40526. https://doi.org/10.1074/jbc.m604508200

23. Heo J. S., Lee S. G., Kim H. O. Distal-less homeobox 5 is a master regulator of the osteogenesis of human mesenchymal stem cells. International Journal of Molecular Medicine, 2017, vol. 40, no. 5, pp. 1486–1494. https://doi.org/10.3892/ijmm.2017.3142

24. Beederman M., Lamplot J. D., Nan G., Wang J., Liu X., Yin L. [et al.]. BMP signaling in mesenchymal stem cell differentiation and bone formation. Journal of Biomedical Science and Engineering, 2013, vol. 6, no. 8A, pp. 32–52. https://doi.org/10.4236/jbise.2013.68a1004

25. Luu H. H., Song W.-X., Luo X., Manning D., Luo J., Deng Z.-L., Sharff K. A., Montag A. G., Haydon R. C., He T.-Ch. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society, 2007, vol. 25, no. 5, pp. 665–677. https://doi.org/10.1002/jor.20359

26. Kang Q., Song W.-X., Luo Q., Tang N., Luo J., Luo X. [et al.]. A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells and Development, 2009, vol. 18, no. 4, pp. 545–559. https://doi.org/10.1089/scd.2008.0130

27. Ng F., Boucher S., Koh S., Sastry K. S. R., Chase L., Lakshmipathy U., Choong C., Yang Z., Vemuri M. C., Rao M. S., Tanavde V. PDGF, TGF-β, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood, 2008, vol. 112, no. 2, pp. 295–307. https://doi.org/10.1182/blood-2007-07-103697

28. Lebouvier A., Poignard A., Cavet M., Amiaud J., Leotot J., Hernigou P., Rahmouni A., Bierling P., Layrolle P., Rouard H., Chevallier N. Development of a simple procedure for the treatment of femoral head osteonecrosis with intra-osseous injection of bone marrow mesenchymal stromal cells: study of their biodistribution in the early time points after injection. Stem Cell Research and Therapy, 2015, vol. 6, no. 1, art. 68. https://doi.org/10.1186/s13287-015-0036-y

29. Ciuffreda M. Ch., Malpasso G., Musarò P., Turco V., Gnecchi M. Protocols for in vitro differentiation of human mesenchymal stem cells into osteogenic, chondrogenic and adipogenic lineages. Mesenchymal Stem Cells: Methods and Protocols, Methods in Molecular Biology. New York, 2016, vol. 1416, pp. 149–158.

30. Yu X., Suárez-González D., Khalil A. S., Murphy W. L. How does the pathophysiological context influence delivery of bone growth factors? Advanced Drug Delivery Reviews, 2015, vol. 84, pp. 68–84. https://doi.org/10.1016/j.addr.2014.10.010

31. Murzich A. E., Pashkevich L. A., Zhernosechenko A. A. Experimental justification of the method of mesenchymal stem cell autotransplantation for regeneration of the femoral head bone tissue. Vestsі Natsyyanal’nai akademіі navuk Belarusі. Seryya medytsynskіkh navuk = Proceedings of the National Academy of Sciences of Belarus. Medical series, 2020, vol. 17, no. 1, pp. 7–19 (in Russian).

32. Zhou H., Xu H. H. K. The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering. Biomaterials, 2011, vol. 32, no. 30, pp. 7503–7513. https://doi.org/10.1016/j.biomaterials.2011.06.045

33. Shih Y.-R. V., Hwang Y., Phadke A., Kang H., Hwang N. S., Caro E. J. [et al.]. Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling. Proceedings of the National Academy of Sciences of the United States of America, 2014, vol. 111, no. 3, pp. 990–995. https://doi.org/10.1073/pnas.1321717111

34. Yuan H., De Bruijn J. D., Li Y., Feng J., Yang Z., De Groot K., Zhang X. Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous alpha-TCP and beta-TCP. Journal of Materials Science: Materials in Medicine, 2001, vol. 12, no. 1, pp. 7–13. https://doi.org/10.1023/A:1026792615665

35. Liu J., Zhao L., Ni L., Qiao Ch., Li D., Sun H., Zhang Z. The effect of synthetic α-tricalcium phosphate on osteogenic differentiation of rat bone mesenchymal stem cells. American Journal of Translational Research, 2015, vol. 7, no. 9, pp. 1588–1601.

36. Yuan H., Kurashina K., de Bruijn J. D., Li Y., de Groot K., Zhang X. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials, 1999, vol. 20, no. 19, pp. 1799–1806. https://doi.org/10.1016/S0142-9612(99)00075-7

37. Götz W., Lenz S., Reichert C., Henkel K.-O., Bienengräber V., Pernicka L., Gundlach K. K. H., Gredes T., Gerber T., Gedrange T., Heinemann F. A preliminary study in osteoinduction by a nano-crystalline hydroxyapatite in the mini pig. Folia Histochemica et Cytobiologica, 2010, vol. 48, no. 4, pp. 589–596. https://doi.org/10.2478/v10042-010-0096-x

38. Polo-Corrales L., Latorre-Esteves M., Ramirez-Vick J. E. Scaffold design for bone regeneration. Journal of Nanoscience and Nanotechnology, 2014, vol. 14, no. 1, pp. 15–56. https://doi.org/10.1166/jnn.2014.9127

39. Calabrese G., Giuffrida R., Fabbi C., Figallo E., Furno D. L., Gulino R., Colarossi C., Fullone F., Giuffrida R., Parenti R., Memeo L., Forte S. Collagen-hydroxyapatite scaffolds induce human adipose derived stem cells osteogenic differentiation in vitro. PLoS ONE, 2016, vol. 11, no. 3, р. e0151181. https://doi.org/10.1371/journal.pone.0151181

40. Dawson J. I., Wahl D. A., Lanham S. A., Kanczler J. M., Czernuszka J. T., Oreffo R. O. C. Development of specific collagen scaffolds to support the osteogenic and chondrogenic differentiation of human bone marrow stromal cells. Biomaterials, 2008, vol. 29, no. 21, pp. 3105–3116. https://doi.org/10.1016/j.biomaterials.2008.03.040


Review

For citations:


Zhernasechanka H.A. Modern concepts of the osteogenic potential of mesenchymal stem cells and the creation of bioengineering structures for bone tissue repair. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2020;17(4):500-508. (In Russ.) https://doi.org/10.29235/1814-6023-2020-17-4-500-508

Views: 509


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)