Preview

Известия Национальной академии наук Беларуси. Серия медицинских наук

Расширенный поиск

Современные представления об остеогенном потенциале мезенхимальных стволовых клеток и создании биоинженерных конструкций для репарации костной ткани

https://doi.org/10.29235/1814-6023-2020-17-4-500-508

Аннотация

В статье суммируются современные представления об остеогенном потенциале мезенхимальных стволовых клеток (МСК) и опыте применения различных носителей для восстановления костной ткани. Понимание реализации программы остеогенеза в МСК сможет существенно расширить возможности применения этих клеток в составе биоинженерных конструкций. На сегодняшний день накоплен большой объем экспериментальных данных по изучению механизма остеогенной дифференцировки МСК, индукторов трансформации МСК в предшественники остеогенеза и созданию эквивалентов костной ткани биоинженерным путем с применением различных носителей. Особое внимание уделяется разработке материалов носителей и их проектированию, методам получения конструкций и взаимодействиям между скэффолдом и клетками, так как это имеет большое значение для дальнейшего функционирования биоинженерной ткани.

Об авторе

А. А. Жерносеченко
Республиканский научно-практический центр детской онкологии, гематологии и иммунологии
Россия

Жерносеченко Анна Александровна – научный сотрудник

ул. Фрунзенская, 43, 223053, Минский р-н, д. Боровляны



Список литературы

1. Hanna, H. In vitro osteoblastic differentiation of mesenchymal stem cells generates cell layers with distinct properties / H. Hanna, L. M Mir // Stem Cell Res. Ther. – 2018. – Vol. 9, N 1. – Art. 203. https://doi.org/10.1186/s13287-018-0942-x

2. Friedenstein, A. J. The development of fibroblast colonies in monolayer cultures of Guinea-pig bone marrow and spleen cells / A. J. Friedenstein, R. K. Chailakhjan // Cell Proliferation. – 1970. – Vol. 3, N 4. – P. 393–403. https://doi.org/10.1111/j.1365-2184.1970.tb00347.x

3. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues / A. J. Friedenstein [et al.] // Transplantation. – 1968. – Vol. 6, N 2. – P. 230–247.

4. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development / L. D. Quarles [et al.] // J. Bone Miner Res. – 1992. – Vol. 7, N 6. – P. 683–692. https://doi.org/10.1002/jbmr.5650070613

5. Камилов, Ф. Х. Клеточно-молекулярные механизмы ремоделирования костной ткани и ее регуляция / Ф. Х. Камилов Е. Р. Фаршатова, Д. А. Еникеев // Фунд. исслед. – 2014. – № 7-4. – С. 836–842.

6. Vater, C. Culture media for the differentiation of mesenchymal stromal cells / C. Vater, P. Kasten, M. Stiehler // Acta Biomater. – 2011. – Vol. 7, N 2. – P. 463–477. https://doi.org/10.1016/j.actbio.2010.07.037

7. Langenbach, F. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro / F. Langenbach, J. Handschel // Stem Cell Res. Ther. – 2013. – Vol. 4, N 5. – Art. 117. https://doi.org/10.1186/scrt328

8. Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach / C. Granéli [et al.] // Stem Cell Res. – 2014. – Vol. 12, N 1. – P. 153–165. https://doi.org/10.1016/j.scr.2013.09.009

9. Osteoblast-oriented differentiation of BMSCs by co-culturing with composite scaffolds constructed using siliconsubstituted calcium phosphate, autogenous fine particulate bone powder and alginate in vitro / Y. Tian [et al.] // Oncotarget. – 2017. – Vol. 8, N 51. – P. 88308–88319. https://doi.org/10.18632/oncotarget.19015

10. Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation / P. Rodríguez [et al.] // J. Cell. Biochem. – 2004. – Vol. 93, N 4. – P. 721–731. https://doi.org/10.1002/jcb.20234

11. Жерносеченко, А. Выбор носителя и условий дифференцировки мезенхимальных стволовых клеток для восстановления костной ткани / А. Жерносеченко, Я. Исайкина, Т. Михалевская // Наука и инновации. – 2019. – № 5. – С. 58–61.

12. Bone regeneration, reconstruction and use of osteogenic cells from basic knowledge, animal models to clinical trials / G. Hutchings [et al.] // J. Clin. Med. – 2020. – Vol. 9, N 1. – Art. 139. https://doi.org/10.3390/jcm9010139

13. Role and regulation of Runx2 in osteogenesis / M. Bruderer [et al.] // Eur. Cell. Mater. – 2014. – Vol. 28. – P. 269–286. https://doi.org/10.22203/ecm.v028a19

14. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression / G. S. Stein [et al.] // Oncogene. – 2004. ‒ Vol. 23. – P. 4315–4329. https://doi.org/10.1038/sj.onc.1207676

15. Transient upregulation of CBFA1 in response to bone morphogenetic protein-2 and transforming growth factor beta1 in C2C12 myogenic cells coincides with suppression of the myogenic phenotype but is not suffcient for osteoblast differentiation / M. H. Lee [et al.] // J. Cell. Biochem. – 1999. – Vol. 73, N 1. – P. 114–125.

16. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures / W. Liu [et al.] // J. Cell Biol. – 2001. – Vol. 155, N 1. – P. 157–166. https://doi.org/10.1083/jcb.200105052

17. In vitro osteogenic potential of human mesenchymal stem cells is predicted by Runx2/Sox9 ratio / C. Loebel [et al.] // Tissue Eng. Part A. – 2015. – Vol. 21, N 1–2. – P. 115–123. https://doi.org/10.1089/ten.tea.2014.0096

18. Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors / H. Akiyama [et al.] // Proc. Natl. Acad. Sci. USA. – 2005. – Vol. 102, N 41. – P. 14665–14670. https://doi.org/10.1073/pnas.0504750102

19. Dominance of Sox9 function over Runx2 during skeletogenesis / G. Zhou [et al.] // Proc. Natl. Acad. Sci. USA. – 2006. – Vol. 103, N 50. – P. 19004–19009. https://doi.org/10.1073/pnas.0605170103

20. SP7 inhibits osteoblast differentiation at a late stage in mice / C. A. Yoshida [et al.] // PLoS ONE. – 2012. – Vol. 7, N 3. – Р. e32364. https://doi.org/10.1371/journal.pone.0032364

21. BMP signals regulate Dlx5 during early avian skull development / N. Holleville [et al.] // Dev. Biol. – 2003. – Vol. 257, N 1. – P. 177–189. https://doi.org/10.1016/S0012-1606(03)00059-9

22. BMP2 commitment to the osteogenic lineage involves activation of Runx2 by DLX3 and a homeodomain transcriptional network / M. Q. Hassan [et al.] // J. Biol. Chem. – 2006. – Vol. 281, N 52. – P. 40515–40526. https://doi.org/10.1074/jbc.m604508200

23. Heo, J. S. Distal-less homeobox 5 is a master regulator of the osteogenesis of human mesenchymal stem cells / J. S. Heo, S. G. Lee, H. O. Kim // Int. J. Mol. Med. – 2017. – Vol. 40, N 5. – P. 1486–1494. https://doi.org/10.3892/ijmm.2017.3142

24. BMP signaling in mesenchymal stem cell differentiation and bone formation / M. Beederman [et al.] // J. Biomed. Sci. Eng. – 2013. – Vol. 6, N 8A. – P. 32–52. https://doi.org/10.4236/jbise.2013.68a1004

25. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells / H. H. Luu [et al.] // J. Orthop. Res. – 2007. – Vol. 25, N 5. – P. 665–677. https://doi.org/10.1002/jor.20359

26. A comprehensive analysis of the dual roles of BMPsin regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells / Q. Kang [et al.] // Stem Cells Dev. – 2009. – Vol. 18, N 4. – P. 545–559. https://doi.org/10.1089/scd.2008.0130

27. PDGF, TGF-β, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages / F. Ng [et al.] // Blood. – 2008. – Vol. 112, N 2. – P. 295–307. https://doi.org/10.1182/blood-2007-07-103697

28. Development of a simple procedure for the treatment of femoral head osteonecrosis with intra-osseous injection of bone marrow mesenchymal stromal cells: study of their biodistribution in the early time points after Injection / A. Lebouvier [et al.] // Stem Cell Res. Ther. – 2015. – Vol. 6, N 1. – Art. 68. https://doi.org/10.1186/s13287-015-0036-y

29. Protocols for in vitro differentiation of human mesenchymal stem cells into osteogenic, chondrogenic and adipogenic lineages / M. Ch. Ciuffreda [et al.] // Mesenchymal stem cells: methods and protocols, methods in molecular biology / ed. M. Gnecchi. – N. Y., 2016. – Vol. 1416. – P. 149‒158.

30. How does the pathophysiological context influence delivery of bone growth factors? / X. Yu [et al.] // Adv. Drug Deliv. Rev. – 2015. – Vol. 84. – P. 68–84. https://doi.org/10.1016/j.addr.2014.10.010

31. Мурзич, А. Э. Экспериментальное обоснование способа аутотрансплантации мезенхимальных стволовых клеток для регенерации костной ткани головки бедра / А. Э. Мурзич, Л. А. Пашкевич, А. А. Жерносеченко // Вес. Нац. aкад. навук Беларусі. Сер. мед. навук. – 2020. – Т. 17, № 1. – С. 7–19.

32. Zhou, H. The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering / H. Zhou, H. H. K. Xu // Biomaterials. – 2011. – Vol. 32, N 30. – P. 7503–7513. https://doi.org/10.1016/j.biomaterials.2011.06.045

33. Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling / Y.-R. V. Shih [et al.] // Proc. Natl. Acad. Sci. USA. – 2014. – Vol. 111, N 3. – P. 990–995. https://doi.org/10.1073/pnas.1321717111

34. Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous alpha-TCP and beta-TCP / H. Yuan [et al.] // J. Mater. SciMater Med. – 2001. – Vol. 12, N 1. – P. 7–13. https://doi.org/10.1023/A:1026792615665

35. The effect of synthetic α-tricalcium phosphate on osteogenic differentiation of rat bone mesenchymal stem cells / J. Liu [et al.] // Am. J. Transl. Res. – 2015. – Vol. 7, N 9. – P. 1588–1601.

36. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics / H. Yuan [et al.] // Biomaterials. – 1999. – Vol. 20, N 19. – P. 1799–1806. https://doi.org/10.1016/S0142-9612(99)00075-7

37. A preliminary study in osteoinduction by a nano-crystalline hydroxyapatite in the mini pig / W. Götz [et al.] // Folia Histochemica et Cytobiologica. – 2010. – Vol. 48, N 4. – P. 589–596. https://doi.org/10.2478/v10042-010-0096-x

38. Polo-Corrales, L. Scaffold Design for Bone Regeneration / L. Polo-Corrales, M. Latorre-Esteves, J. E. Ramirez-Vick // J. Nanosci. Nanotechnol. – 2014. – Vol. 14, N 1. – P. 15–56. https://doi.org/10.1166/jnn.2014.9127

39. Collagen-hydroxyapatite scaffolds induce human adipose derived stem cells osteogenic differentiation in vitro / G. Calabrese [et al.] // PLoS ONЕ. – 2016. – Vol. 11, N 3. – Р. e0151181. https://doi.org/10.1371/journal.pone.0151181

40. Development of specific collagen scaffolds to support the osteogenic and chondrogenic differentiation of human bone marrow stromal cells / J. I. Dawson [et al.] // Biomaterials. – 2008. – Vol. 29, N 21. – P. 3105–3116. https://doi.org/10.1016/j.biomaterials.2008.03.040


Рецензия

Для цитирования:


Жерносеченко А.А. Современные представления об остеогенном потенциале мезенхимальных стволовых клеток и создании биоинженерных конструкций для репарации костной ткани. Известия Национальной академии наук Беларуси. Серия медицинских наук. 2020;17(4):500-508. https://doi.org/10.29235/1814-6023-2020-17-4-500-508

For citation:


Zhernasechanka H.A. Modern concepts of the osteogenic potential of mesenchymal stem cells and the creation of bioengineering structures for bone tissue repair. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2020;17(4):500-508. (In Russ.) https://doi.org/10.29235/1814-6023-2020-17-4-500-508

Просмотров: 395


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)