Impact of diabetic (diabetes mellitus) patients immune factors on the skin cell viability in vitro
https://doi.org/10.29235/1814-6023-2020-17-3-263-274
Abstract
About the Authors
M. A. MashkovaBelarus
Maryia А. Mashkova – Postgraduate student, Assistant
83, Dzerzhynskii Ave., 220116, Minsk
T. V. Mokhort
Belarus
Tatiana V. Mokhort – D. Sc. (Med.), Professor, Head of the Department
83, Dzerzhynskii Ave., 220116, Minsk
V. A. Goranov
Belarus
Vitaly A. Goranov – Ph. D. (Med.), Researcher
83, Dzerzhynskii Ave., 220116, Minsk
References
1. IDF Diabetes Atlas 9th Edition. Available at: https://www.diabetesatlas.org/en/resources/ (accessed 19.04.2020).
2. Geraghty T., LaPorta G. Current health and economic burden of chronic diabetic osteomyelitis. Expert Review of Pharmacoeconomics and Outcomes Research, 2019, vol. 19, no. 3, pp. 279–286. https://doi.org/10.1080/14737167.2019.1567337
3. Ibrahim A., Jude E., Langton K., Martinez-De Jesus F. R., Harkless L. B., Gawish H. [et al.]. IDF Clinical Practice Recommendations on the Diabetic Foot – 2017. A guide for healthcare professionals. Brussels, International Diabetes Federation, 2017. 70 p.
4. The 2019 IWGDF Guidance Documents on prevention and management of foot problems in diabetes. Available at: https://iwgdfguidelines.org/guidelines/guidelines/ (accessed 19.04.2020).
5. Ud-Din S., Bayat A. Non-animal models of wound healing in cutaneous repair: In silico, in vitro, ex vivo, and in vivo models of wounds and scars in human skin. Wound Repair and Regeneration, 2017, vol. 25, no. 2, pp. 164–176. https://doi.org/10.1111/wrr.12513
6. Chau D. Y. S., Johnson C., MacNeil S., Haycock J. W., Ghaemmaghami A. M. The development of a 3D immunocompetent model of human skin. Biofabrication, 2013, vol. 5, no. 3, p. 035011. https://doi.org/10.1088/1758-5082/5/3/035011
7. Ahmed S. A., Gogal R. M., Walsh J. E. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. Journal of Immunological Methods, 1994, vol. 170, no. 2, pp. 211–224. https://doi.org/10.1016/0022-1759(94)90396-4
8. Baltzis D., Eleftheriadou I., Veves A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Advances in Therapy, 2014, vol. 31, no. 8, pp. 817–836. https://doi.org/10.1007/s12325-014-0140-x
9. Lerman O. Z., Galiano R. D., Armour M., Levine J. P., Gurtner G. C. Cellular dysfunction in the diabetic fibroblast. Impairment in migration, vascular endothelial growth factor production, and response to hypoxia. American Journal of Pathology, 2003, vol. 162, no. 1, pp. 303–312. https://doi.org/10.1016/S0002-9440(10)63821-7
10. Maione A. G., Brudno Y., Stojadinovic O., Park L. K., Smith A., Tellechea A. [et al.]. Three-dimensional human tissue models that incorporate diabetic foot ulcer-derived fibroblasts mimic in vivo features of chronic wounds. Tissue Engineering Part C: Methods, 2015, vol. 21, no. 5, pp. 499–508. https://doi.org/10.1089/ten.TEC.2014.0414
11. Kraakman M. J., Murphy A. J., Jandeleit-Dahm K., Kammoun H. L. Macrophage polarization in obesity and type 2 diabetes: weighing down our understanding of macrophage function? Frontiers in Immunology, 2014, vol. 5, art. 470. https://doi.org/10.3389/fimmu.2014.00470
12. Khanna S., Biswas S., Shang Y., Collard E., Azad A., Kauh C., Bhasker V., Gordillo G. M., Sen C. K., Roy S. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS ONE, 2010, vol. 5, no. 3, pp. e9539. https://doi.org/10.1371/journal.pone.0009539
13. Gallagher K. A., Joshi A., Carson W. F., Schaller M., Allen R., Mukerjee S. [et al.]. Epigenetic changes in bone marrow progenitor cells influence the inflammatory phenotype and alter wound healing in type 2 diabetes. Diabetes, 2015, vol. 64, no. 4, pp. 1420–1430. https://doi.org/10.2337/db14-0872
14. Sîrbulescu R. F., Boehm C. K., Soon E., Wilks M. Q., Ilieş J., Yuan H. [et al.]. Mature B cells accelerate wound healing after acute and chronic diabetic skin lesions. Wound Repair and Regeneration, 2017, vol. 25, no. 5, pp. 774–791. https://doi.org/10.1111/wrr.12584
15. Li R., Rezk A., Healy L. M., Muirhead G., Prat A., Gommerman J. L., Bar-Or A. Cytokine-defined B cell responses as therapeutic targets in multiple sclerosis. Frontiers in Immunology, 2016, vol. 6, art. 626. https://doi.org/10.3389/fimmu.2015.00626
16. Goodchild T. T., Robinson K. A., Pang W., Tondato F., Cui J., Arrington J. [et al.]. Bone marrow-derived B cells preserve ventricular function after acute myocardial infarction. JACC: Cardiovasc Interventions, 2009, vol. 2, no. 10, pp. 1005‒1016. https://doi.org/10.1016/j.jcin.2009.08.010
17. Nishio N., Ito S., Suzuki H., Isobe K. Antibodies to wounded tissue enhance cutaneous wound healing. Immunology, 2009, vol. 128, no. 3, pp. 369‒380. https://doi.org/10.1111/j.1365-2567.2009.03119.x
18. Iwata Y., Yoshizaki A., Komura K., Shimizu K., Ogawa F., Hara T. [et al.].CD19, a response regulator of B lymphocytes, regulates wound healing through hyaluronan-induced TLR4 signaling. American Journal of Pathology, 2009, vol. 175, no. 2, pp. 649‒660. https://doi.org/10.2353/ajpath.2009.080355
19. Könnecke I., Serra A., Khassawna T., Schlundt C., Schell H., Hauser A. [et al.]. T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion. Bone, 2014, vol. 64, pp. 155‒165. https://doi.org/10.1016/j.bone.2014.03.052
20. Chen L., Mehta N. D., Zhao Y., DiPietro L. A. Absence of CD4 or CD8 lymphocytes changes infiltration of inflammatory cells and profiles of cytokine expression in skin wounds, but does not impair healing. Experimental Dermatology, 2014, vol. 23, no. 3, pp. 189–194. https://doi.org/10.1111/exd.12346
21. Moura J., Madureira P., Leal E. C., Fonseca A. C., Carvalho E. Immune aging in diabetes and its implications in wound healing. Clinical Immunology, 2019, vol. 200, pp. 43–54. https://doi.org/10.1016/j.clim.2019.02.002
22. Moura J., Rodrigues J., Gonçalves M., Amaral C., Lima M., Carvalho E. Impaired T-cell differentiation in diabetic foot ulceration. Cellular and Molecular Immunology, 2017, vol. 14, no. 9, pp. 758–769 https://doi.org/10.1038/cmi.2015.116
Review
For citations:
Mashkova M.A., Mokhort T.V., Goranov V.A. Impact of diabetic (diabetes mellitus) patients immune factors on the skin cell viability in vitro. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2020;17(3):263-274. (In Russ.) https://doi.org/10.29235/1814-6023-2020-17-3-263-274