Role of stellate cells in the morphogenesis of chronic pancreatitis
https://doi.org/10.29235/1814-6023-2018-15-4-455-464
Abstract
This review presents an analysis of the literature on the role of pancreatic stellate cells (PSCs) in the pathogenesis of fibrosis, a predominant histological feature of chronic alcoholic pancreatitis. It is shown that ethanol and toxic products of its metabolism can affect PSCs directly and indirectly, facilitating their transformation from a quiescent to an activated state. During the pathological process, PSCs interact with parenchymal and immune cells of the pancreas through cytokines and growth factors. In activated PSCs, the proliferative and migratory activity, as well as the synthesis of extracellular matrix (ECM) proteins increases. A continuous activation of PSCs during the disease promotes the maintenance of inflammation, the deposition of excessive amounts of ECM proteins and the development of pancreatic fibrosis.
About the Author
L. A. MozhejkoBelarus
Ph. D. (Med.), Assistant Professor
References
1. Revtovich M. Yu., Leonovich S. I. Chronic pancreatitis: some aspects of the problem. Meditsinskii zhurnal [Medical journal], 2006, no. 4, pp. 14–16 (in Russian).
2. Sirenko O. Yu. Pancreatic stellate cells as a morphological basis for the development of pancreatic fibrosis. Morfologiya [Morphology], 2010, vol. 4, no. 1, pp. 5–12 (in Ukrainian).
3. Vorobei A. V., Shuleiko A. Ch., Vladimirskaya T. E., Shved I. A., Vizhinis E. I., Orlovskii Yu. N., Makki M. Yu. Interrelation of fibrosis and pancreatic hypoxia in pathogenesis of chronic pancreatitis. Ukrainskii zhurnal khirurgii = Ukrainian journal of surgery, 2017, no. 2 (33), pp. 10–20 (in Ukrainian).
4. Apte M., Pirola R. C., Wilson J. S. Pancreatic stellate cell: physiologic role, role in fibrosis and cancer. Current Opinion in Gastroenterology, 2015, vol. 31, no. 5, pp. 416–423. https://doi.org/10.1097/mog.0000000000000196
5. Bynigeri R. R., Jakkampudi A., Jangala R., Subramanyam C., Sasikala M., Venkat G. Rao, Nageshwar D. R, Talukdar R. Pancreatic stellate cell: Pandora’s box for pancreatic disease biology. World Journal of Gastroenterology, 2017, vol. 23, no. 3, pp. 382–405. https://doi.org/10.3748/wjg.v23.i3.382
6. Mössner J. Epidemiology of chronic pancreatitis. Standards in pancreatic surgery. Berlin, Springer, 1993, pp. 263–271.
7. Pezzilli R. Pancreatic stellate cells and chronic alcoholic pancreatitis. JOP. Journal of Pancreas, 2007, vol. 8, no. 2, pp. 254–257.
8. Mozheyko L. A. Рancreatic stellate cells: structure and function. Рt. 1. Morphofunctional characteristics of pancreatic stellate cells under physiological conditions. Gepatologiya i gastroenterologiya [Hepatology and Gastroenterology], 2018, no. 1, pp. 21–25 (in Russian).
9. Bachem M. G., Schneider E., Groß H., Weidenbach H., Schmid R. M., Menke A., Siech M., Beger H., Grünert A., Adler G. Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology, 1998, vol. 115, no. 2, pp. 421–432. https://doi.org/10.1016/s0016-5085(98)70209-4
10. Apte M. V., Wilson J. S. Dangerous liaisons: pancreatic stellate cells and pancreatic cancer cells. Journal of Gastroenterology and Hepatology, 2012, vol. 27, suppl. 2, pp. 69–74. https://doi.org/10.1111/j.1440-1746.2011.07000.x
11. Phillips P. A., McCarroll J. A., Park S., Wu M.-J., Korsten M., Pirola R., Wilson J. S., Apte M. V. Rat pancreatic stellate cells secrete matrix metalloproteinases: implications for extracellular matrix turnover. Gut, 2003, vol. 52, no. 2, pp. 275–282. https://doi.org/10.1136/gut.52.2.275
12. Ferdek P. E., Jakubowska M. A. Biology of pancreatic stellate cells – more than just pancreatic cancer. European Journal of Physiology, 2017, vol. 469, no. 9, pp. 1039–1050. https://doi.org/10.1007/s00424-017-1968-0
13. Wilson J. S., Apte M. V. Role of alcohol metabolism in alcoholic pancreatitis. Pancreas, 2003, vol. 27, no. 4, pp. 311–315. https://doi.org/10.1097/00006676-200311000-00007
14. Apte M. V., Phillips P. A., Fahmy R. G., Darby S. J., Rodgers S. C., McCaughan G. W., Korsten M. A., Pirola R. C., Naidoo D., Wilson J. S. Does alcohol directly stimulate pancreatic fibrogenesis? Studies with rat pancreatic stellate cells. Gastroenterology, 2000, vol. 118, no. 4, pp. 780–794. https://doi.org/10.1016/s0016-5085(00)70148-x
15. Apte M. V., Pirola R. C., Wilson J. S. Battle-scarred pancreas: role of alcohol and pancreatic stellate cells in pancreatic fibrosis. Journal of Gastroenterology and Hepatology, 2006, vol. 21, suppl. 3, pp. S97–S101. https://doi.org/10.1111/ j.1440-1746.2006.04587.x
16. Hu R., Wang Y.-L., Edderkaoui M., Lugea A., Apte M. V., Pandol S. J. Ethanol augments PDGF-induced NADPH oxidase activity and proliferation in rat pancreatic stellate cells. Pancreatology, 2007, vol. 7, no. 4, pp. 332–340. https://doi.org/10.1159/000105499
17. Vonlaufen A., Phillips P., Xu Zh., Zhang X., Yang L., Pirola R., Wilson J. S., Apte M. V. Alcohol withdrawal promotes regression of pancreatic fibrosis via induction of Pancreatic Stellate Cell (PSC) apoptosis. Gastroenterology, 2011, vol. 136, no. 5, suppl. 1, pp. A-589–A-590. https://doi.org/10.1016/S0016-5085(09)62716-5
18. Reed A. M., Gorelick F. S. Animal models of chronic pancreatitis. Pancreapedia: Exocrine Pancreas Knowledge Base. Available at: https://www.pancreapedia.org/reviews/animal-models-of-chronic-pancreatitis (accessed 20.09.2018).
19. Zhan X., Wang F., Bi Y., Ji B. Animal models of gastrointestinal and liver diseases. Animal models of acute and chronic pancreatitis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2016, vol. 311, no. 3, pp. G343–G355. https://doi.org/10.1152/ajpgi.00372.2015
20. Tumanskii V. A., Kovalenko I. S. Severe fibrosis of the pancreas in chronic pancreatitis: main pathological components, immunophenotype of fibrogenic cells and collagen. Patologiya [Patology], 2013, no. 1 (27), pp. 27–30 (in Ukrainian).
21. Wenyan Hu, Ling Fu. Simultane ous character ization of pancreatic stellate cells and other pancreatic components within three-dimensional tissue environment during chronic pancreatitis. Journal of Biomedical Optics, 2013, vol. 18, no. 5, pp. 056002. https://doi.org/10.1117/1.jbo.18.5.056002
22. Suda K. (ed.). Pancreas – pathological practice and research. Tokyo, Karger, 2007. 318 p.
23. Sparmann G., Kruse M.-L., Hofmeister-Mielke N., Koczan D., Jaster R., Liebe S., Wolff D., Emmrich J. Bone marrowderived pancreatic stellate cells in rats. Cell Research, 2010, vol. 20, no. 3, pp. 288–298. https://doi.org/10.1038/cr.2010.10
24. Kuehn R., Lelkes P. I., Bloechle C., Niendorf A., Izbicki J. R. Angiogenesis, angiogenic growth factors, and cell adhesion molecules are upregulated in chronic pancreatic diseases: angiogenesis in chronic pancreatitis and in pancreatic cancer. Pancreas, 1999, vol. 18, no. 1, pp. 96–103. https://doi.org/10.1097/00006676-199901000-00012
25. Hao W., Komar H. M., Hart P. A., Conwell D. L., Lesinski G. B., Friedman A. Mathematical model of chronic pancreatitis. Proceeding of the National Academy of Sciences, 2017, vol. 114, no. 19, рр. 5011–5016. https://doi.org/10.1073/ pnas.1620264114
26. Omary M. B., Lugea A., Lowe A. W., Pandol S. J. The pancreatic stellate cell: a star on the rise in pancreatic diseases. Journal of Clinical Investigate, 2007, vol. 117, no. 1, рр. 50–59. https://doi.org/10.1172/jci30082
27. Mews P., Phillips P., Fahmy R., Korsten M., Pirola R., Wilson J., Apte M. Pancreatic stellate cells respond to inflammatory cytokines: potential role in chronic pancreatitis. Gut, 2002, vol. 50, no. 4, рр. 535–541. https://doi.org/10.1136/ gut.50.4.535
28. Marra F. Renaming cytokines: MCP-1, major chemokine in pancreatitis. Gut, 2005, vol. 54, no. 12, рр. 1679–1681. https://doi.org/10.1136/gut.2005.068593
29. Xue J., Sharma V., Hsieh M. H., Chawla A., Murali R., Pandol S. J., Habtezion A. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nature Communications, 2015, vol. 6, no. 1. https://doi.org/10.1038/ ncomms8158
30. Haber P. S., Keogh G. W., Apte M. V., Moran C. S., Stewart N. L., Crawford D. H. G., Pirola R. C., McCaughan G. W., Ramm G. A., Wilson J. S. Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis. American Journal of Pathology, 1999, vol. 155, no. 4, рр. 1087–1095. https://doi.org/10.1016/s0002-9440(10)65211-x
31. Masamune A., Kikuta K., Satoh M., Sakai Y., Satoh A., Shimosegawa T. Ligands of peroxisome proliferator-activated receptor-gamma block activation of pancreatic stellate cells. Journal of Biological Chemistry, 2001, vol. 277, no. 1, рр. 141–147. https://doi.org/10.1074/jbc.m107582200
32. Marzoq A. J., Giese N., Hoheisel J. D., Alhamdani M. S. S. Proteome variations in pancreatic stellate cells upon stimulation with proinflammatory factors. Journal of Biological Chemistry, 2013, vol. 288, no. 45, рр. 32517–32527. https://doi.org/10.1074/jbc.m113.488387
33. Suda K., Fukumura Y., Takase M., Kashiwagi S., Izumi M., Kumasaka T., Suzuki F. Activated perilobular, not periacinar, pancreatic stellate cells contribute to fibrogenesis in chronic alcoholic pancreatitis. Pathology International, 2007, vol. 57, no. 1, рр. 21–25. https://doi.org/10.1111/j.1440-1827.2007.02051.x
34. Brock C., Nielsen L. M., Lelic D., Drewes A. M. Pathophysiology of chronic pancreatitis. World Journal of Gastro enterology, 2013, vol. 19, no. 42, рр. 7231–7240. https://doi.org/10.3748/wjg.v19.i42.7231
35. Matsumura N., Ochi K., Ichimura M., Mizushima T., Harada H., Harada M. Study on free radicals and pancreatic fibrosis-pancreatic fibrosis induced by repeated injections of superoxide dismutase inhibitor. Pancreas, 2001, vol. 22, no. 1, рр. 53–57. https://doi.org/10.1097/00006676-200101000-00009
36. Aoki H., Ohnishi H., Hama K., Shinozaki S., Kita H., Osawa H., Yamamoto H., Sato K., Tamada K., Sugano K. Cyclooxygenase-2 is required for activated pancreatic stellate cells to respond to proinflammatory cytokines. American Journal of Physiology – Cell Physiology, 2007, vol. 292, no. 1, рр. C259–C268. https://doi.org/10.1152/ajpcell.00030.2006
37. Shimizu K. Mechanisms of pancreatic fibrosis and applications to the treatment of chronic pancreatitis. Journal of Gastroenterology, 2008, vol. 43, no. 11, рр. 823–832. https://doi.org/10.1007/s00535-008-2249-7
38. Nichitailo M. E., Kravchenko D. A., Medvetskii E. B., Shpon’ka I. S., Savitskaya I. M. Inhibition of pancreatic stellate cell activation by the vitamin A and vitamin E as a therapy for prevention fibrogenesis in experimental chronic alcoholic pancreatic. Morfologiya [Morphology], 2012, vol. 6, no. 2, рр. 34–41 (in Russian).
39. Talukdar R., Tandon R. K. Pancreatic stellate cells: new target in the treatment of chronic pancreatitis. Journal of Gastroenterology and Hepatology, 2008, vol. 23, no. 1, рр. 34–41. https://doi.org/10.1111/j.1440-1746.2007.05206.x
40. Fitzner B., Müller S., Walther M., Fischer M., Engelmann R., Müller-Hilke B., Pützer B. M., Kreutzer M., Nizze H., Jaster R. Senescence determines the fate of activated rat pancreatic stellate cells. Journal of Cellular and Molecular Medicine, 2012, vol. 16, no. 11, рр. 2620–2630. https://doi.org/10.1111/j.1582-4934.2012.01573.x
41. Tian L., Lu Z.-P., Cai B.-B., Zhao L.-T., Qian D., Xu Q.-Ch., Wu P.-F., Zhu Y., Zhang J.-J., Du Q., Miao Y., Jiang K.-R. Activation of pancreatic stellate cells involves an EMT-like process. International Journal of Oncology, 2016, vol. 48, no. 2, рр. 783–792. https://doi.org/10.3892/ijo.2015.3282
42. Pearson G., Robinson F., Beers Gibson T., Xu B., Karandikar M., Berman K., Cobb M. H. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Reviews. 2001, vol. 22, no. 2, рр. 153–183. https://doi.org/10.1210/er.22.2.153
43. Masamune A., Shimosegawa T. Signal transduction in pancreatic stellate cells. Journal of Gastroenterology, 2009, vol. 44, no. 4, рр. 249–260. https://doi.org/10.1007/s00535-009-0013-2
44. McCarroll J. A., Phillips P. A., Park S., Doherty E., Pirola R. C., Wilson J. S., Apte M. V. Pancreatic stellate cell activation by ethanol and acetaldehyde: is it mediated by the mitogen-activated protein kinase signaling pathway? Pancreas, 2003, vol. 27, no. 2, рр. 150–160. ttps://doi.org/10.1097/00006676-200308000-00008
45. Ohnishi H., Miyata T., Yasuda H., Satoh Y., Hanatsuka K., Kita H., Ohashi A., Tamada K., Makita N., Iiri T., Ueda N., Mashima H., Sugano K. Distinct roles of Smad2-, Smad3-, and ERK-dependent pathways in transforming growth factor-beta1 regulation of pancreatic stellate cellular functions. Journal of Biological Chemistry, 2003, vol. 279, no. 10, рр. 8873–8878. https://doi.org/10.1074/jbc.m309698200
Review
For citations:
Mozhejko L.A. Role of stellate cells in the morphogenesis of chronic pancreatitis. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2018;15(4):455-464. (In Russ.) https://doi.org/10.29235/1814-6023-2018-15-4-455-464