Significance of the liver arginase activity in the processes of detoxification, formation of thyroid status and dyslipidemia in rats with experimental peritonitis
https://doi.org/10.29235/1814-6023-2024-21-4-282-293
Abstract
Peritonitis is a surgical and general pathological problem, the relevance of which does not decrease despite the achievements of modern clinical and experimental medicine. Peritonitis, being one of the most severe complications of various diseases and injuries to the abdominal organs, triggers a complex cascade of pathogenetic reactions with disruption of vital processes. The mortality rate for peritonitis is 20‒30 %, and in its most severe forms it reaches 50–80 %. High mortality is caused by endotoxemia, multiple organ failure and sepsis. To date, sufficient data have been accumulated, indicating the importance of liver arginase in the processes of detoxification and vital activity of the body in normal conditions and in pathology. There were reasons to believe that its activity would be significant in the pathogenesis of peritonitis. However, the elucidation of significance of the liver arginase activity in detoxification processes and in the pathogenesis of septic conditions and peritonitis in particular has been still little studied.
The purpose of the study was to determine the significance of the liver arginase activity in the processes of detoxification, the formation of thyroid status and dyslipidemia in rats with experimental peritonitis (CLP-model).
In experiments on rats, it was found that liver arginase and nitrogen monoxide are involved in changes in the content of total cholesterol in the liver and lipoproteins in the blood serum, the level of iodine-containing thyroid hormones in the blood plasma and body temperature during CLP-peritonitis. Developing CLP-peritonitis in the conditions of liver argina- se depression by Nω-hydroxy-nor-L-arginine at a dose of 10 mg/kg is accompanied by a more pronounced inhibition of the detoxification function of the liver, worsening changes in the content of total cholesterol in the liver and lipoproteins in the blood serum, and the level of iodine-containing hormones in the blood plasma and contributes to the development of secondary dislipoproteinemia.
About the Authors
E. N. ChepelevaBelarus
Elena N. Chepeleva – Senior Lecturer
83, Dzerzhinski Ave., 220083, Minsk
F. I. Vismont
Belarus
Frantishek I. Vismont – Corresponding Member, D. Sc. (Med.), Professor, Head of the Department
83, Dzerzhinski Ave., 220083, Minsk
References
1. Marzougui Y., Missaoui K., Hannachi Z., Dhibi Y., Kouka J., Dziri C., Houissa M. Peritonites post operatoires: facteurs pronostiques de mortalite. Archives de l’Institut Pasteur de Tunis, 2014, vol. 91, no. 1–4, pp. 67–76 (in French).
2. Yakovlev M. Yu. Systemic endotoxemia. Moscow, Nauka Publ., 2021. 184 p. (in Russian).
3. Rath M., Müller I., Kropf P., Closs E. I., Munder M. Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Frontiers in Immunology, 2014, no. 5, art. ID 532, pp. 1–10. https://doi.org/10.3389/fimmu.2014.00532
4. Mori M. Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. Journal of Nutrition, 2007, vol. 137, no. 6–2, pp. 1616S–1620S. https://doi.org/10.1093/jn/137.6.1616S
5. McAllister R. M., Albarracin I., Price E. M., Smith T. K., Turk J. R., Wyatt K. D. Thyroid status and nitric oxide in rat arterial vessels. Journal of Endocrinology, 2005, vol. 185, no. 1, pp. 111–119. https://doi.org/10.1677/joe.1.06022
6. Quesada A., Sainz J., Wangensteen R., Rodriguez-Gomez I., Vargas F., Osuna A. Nitric oxide synthase activity in hyperthyroid and hypothyroid rats. European Journal of Endocrinology, 2002, vol. 147, no. 1, pp. 117–122. https://doi.org/10.1530/eje.0.1470117
7. Duntas L. H., Brenta G. A renewed focus on the association between thyroid hormones and lipid metabolism. Frontiers in Endocrinology (Lausanne), 2018, no. 9, art. ID 511, pp. 1–10. https://doi.org/10.3389/fendo.2018.00511
8. Bondar’ T. N. An organism thyroid status and nitric oxide. Annali Mechnikovs’kogo іnstitutu [Annals of Mechnikov Institute], 2008, no. 3, pp. 8–12 (in Russian).
9. Pegg A. E. Mammalian polyamine metabolism and function. IUBMB Life, 2009, vol. 61, no. 9, pp. 880–894. https:// doi.org/10.1002/iub.230
10. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32010L0063&qid=1660822800456&from=EN (accessed 10.07.2024).
11. The animal health rules for the reception, care and dissection of the experimental animals in the vivarium research institutes, stations, laboratories, schools and nurseries. National Fund of Technical Legal Acts of the Republic of Belarus. Available at: http://www.tnpa.by/#!/FileText/348641/250983 (accessed 10.07.2024) (in Russian).
12. Shapovalova E. Yu., Demyashkin G. A., Malanichev M. Yu., Pogosyan D. A., Zorin I. A., Shchekin V. I. Simulation of experimental sepsis by cecal ligation and puncture (CLP). Ul’yanovskii mediko-biologicheskii zhurnal [Ulyanovsk medicobiological journal], 2020, no. 3, pp. 150–158 (in Russian).
13. Capcha J. M. C., Moreira R. S., Rodrigues C. E., Silveira M. A. D., Andrade L., Gomes S. A. Using the cecal ligation and puncture model of sepsis to induce rats to multiple organ dysfunction. Bio-protocol, 2021, vol. 11, no. 7, p. e3979. https:// doi.org/10.21769/BioProtoc.3979
14. Burstein M., Samaille J. Sur la clarification du sérum lipémique par l’héparine in vitro. Comptes rendus hebdomadaires des séances de l’Académie des sciences, 1955, vol. 241, no. 9, pp. 664–665 (in French).
15. Krekhova M. A., Chekhranova M. K. Fractional determination of cholesterol esters in blood and tissues using thin layer chromatography. Voprosy meditsinskoi khimii [Medicinal chemistry issues], 1971, vol. 17, no. 1, pp. 93–98 (in Russian).
16. Maarsingh H., Dekkers B. G. J., Zuidhof A. B., Bos I. S. T., Menzen M. H., Klein T., Flik G., Zaagsma J., Meurs H. Increased arginase activity contributes to airway remodelling in chronic allergic asthma. European Respiratory Journal, 2011, vol. 38, no. 2, pp. 318–328. https://doi.org/10.1183/09031936.00057710
17. Moshage H., Kok B., Huizenga J. R., Jansen P. L. Nitrite and nitrate determinations in plasma: a critical evaluation. Clinical Chemistry, 1995, vol. 41, no. 6, pp. 892–896. https://doi.org/10.1093/clinchem/41.6.892
18. Kamyshnikov V. S. Handbook of clinical and biochemical studies and laboratory diagnostics. 3rd ed. Moscow, MEDpress-inform Publ., 2009. 896 p. (in Russian).
19. Moin V. M., Nikolaichik V. V., Kirkovskii V. V., Lobacheva G. A., Mazur L. I. The method for determining the group of substances of middle molecules in biological fluids. A. s. 1520445 SSSR, VRB F 01 no. 33/50. Otkrytiya. Izobreteniya [Discoveries. Inventions], 1987, no. 41, p. 415 (in Russian).
20. Rad’kova O. A., Boyarinov G. A., Balishina I. N., Krylov K. V. A method for determining the toxicity of biological fluids. A. s. 1146570 SSSR, MKI b Ol no. 1/28. Otkrytiya. Izobreteniya [Discoveries. Inventions], 1985, no. 11. 616 p. (in Russian).
21. Lekkou A., Mouzaki A., Siagris D., Ravani I., Gogos C. A. Serum lipid profile, cytokine production, and clinical outcome in patients with severe sepsis. Journal of Critical Care, 2014, vol. 29, no. 5, pp. 723–727. https://doi.org/10.1016/j.jcrc.2014.04.018
22. Fan Y., Chen J., Liu D., Li W., Wang H., Huang Y., Gao C. HDL-S1P protects endothelial function and reduces lung injury during sepsis in vivo and in vitro. International Journal of Biochemistry and Cell Biology, 2020, vol. 126, art. 105819. https://doi.org/10.1016/j.biocel.2020.105819
23. Tanaka S., Diallo D., Delbosc S., Genève C., Zappella N., Yong-Sang J. [et al.]. High-density lipoprotein (HDL) particle size and concentration changes in septic shock patients. Annals of Intensive Care, 2019, vol. 9, no. 1, art. 68. https://doi.org/10.1186/s13613-019-0541-8
24. Gusakovskaya E. V., Maksimovich N. E. Characteristics of changes in rats with acute experimental peritonitis. Zhurnal Grodnenskogo gosudarstvennogo meditsinskogo universiteta [Journal of Grodno State Medical University], 2022, vol. 20, no. 1, pp. 91–97 (in Russian).
25. Amunugama K., Pike D. P., Ford D. A. The lipid biology of sepsis. Journal of Lipid Research, 2021, vol. 62, art. 100090. https://doi.org/10.1016/j.jlr.2021.100090
26. Chepeleva E. N., Vismont F. I. Kupffer cells in the regulation of the cholesterol content in the liver and the blood lipoproteins, the level of iodine-containing thyroid hormones in the blood and the body temperature in rats with experimental peritonitis. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya medytsynskikh navuk = Proceedings of the National Academy of Sciences of Belarus. Medical series, 2021, vol. 18, no. 4, pp. 391–401 (in Russian).
27. Bermudes A. C. G., de Carvalho W. B., Zamberlan P., Muramoto G., Maranhão R. C., Delgado A. F. Changes in lipid metabolism in pediatric patients with severe sepsis and septic shock. Nutrition, 2018, vol. 47, pp. 104–109. https://doi.org/10.1016/j.nut.2017.09.015
28. Barlage S., Gnewuch C., Liebisch G., Wolf Z., Audebert F. X., Glück T., Fröhlich D., Krämer B. K., Rothe G., Schmitz G. Changes in HDL-associated apolipoproteins relate to mortality in human sepsis and correlate to monocyte and platelet activation. Intensive Care Medicine, 2009, vol. 35, no. 11, pp. 1877–1885. https://doi.org/10.1007/s00134-009-1609-y
29. Stuehr D. J. Mammalian nitric oxide synthases. Biochimica et Biophysica Acta, 1999, vol. 1411, no. 2–3, pp. 217–230. https://doi.org/10.1016/s0005-2728(99)00016-x
30. MacMicking J., Xie Q. W., Nathan C. Nitric oxide and macrophage function. Annual Review of Immunology, 1997, vol. 15, pp. 323–350. https://doi.org/10.1146/annurev.immunol.15.1.323
31. Marathe C., Bradley M. N., Hong C., Lopez F., Ruiz de Galarreta C. M., Tontonoz P., Castrillo A. The arginase II gene is an anti-inflammatory target of liver X receptor in macrophages. Journal of Biological Chemistry, 2006, vol. 281, no. 43, pp. 32197–32206. https://doi.org/10.1074/jbc.M605237200
32. Chepeleva E. N., Vismont F. I. On the significance of the activity of liver arginase and Kupffer cells in the development of secondary atherogenic dyslipidemia and the formation of thyroid status in rats with experimental peritonitis. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya medytsynskikh navuk = Proceedings of the National Academy of Sciences of Belarus. Medical series, 2023, vol. 20, no. 1, pp. 17–27 (in Russian).
33. Caldwell R. W., Rodriguez P. C., Toque H. A., Narayanan S. P., Caldwell R. B. Arginase: a multifaceted enzyme important in health and disease. Physiological Reviews, 2018, vol. 98, no. 2, pp. 641–665. https://doi.org/10.1152/physrev.00037.2016
34. Munder M. Arginase: an emerging key player in the mammalian immune system. British Journal of Pharmacology, 2009, vol. 158, no. 3, pp. 638–651. https://doi.org/10.1111/j.1476-5381.2009.00291.x
Review
For citations:
Chepeleva E.N., Vismont F.I. Significance of the liver arginase activity in the processes of detoxification, formation of thyroid status and dyslipidemia in rats with experimental peritonitis. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2024;21(4):282-293. (In Russ.) https://doi.org/10.29235/1814-6023-2024-21-4-282-293