1. The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis / M. Caws [et al.] // PLoS Pathog. - 2008. - Vol. 4, N 3. - Art. e1000034. https://doi.org/10.1371/journal.ppat.1000034
2. Multisectoral accountability framework to accelerate progress to end tuberculosis by 2030 : WHO/CDS/TB/2019.10 WHO, 2019: 30.
3. Глобальные отчеты Всемирной организации здравоохранения по туберкулезу: формирование и интерпретация / И. А. Васильева [и др.] // Туберкулез и болезни легких. - 2017. - Т. 95, № 5. - С. 7-16.
4. Koonin, E. V. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world / E. V. Koonin, Y. I. Wolf // Nucl. Acids Res. - 2008. - Vol. 36, N 21. - P. 6688-6719. https://doi.org/10.1093/nar/gkn668
5. Мокроусов, И. В. Методологические подходы к генотипированию Mycobacterium tuberculosis для эволюционных и эпидемиологических исследований / И. В. Мокроусов // Инфекция и иммунитет. - 2012. - T. 2, № 3. - С. 603-614.
6. Singh, A. Guardians of the mycobacterial genome: A review on DNA repair systems in Mycobacterium tuberculosis / A. Singh // Microbiology. - 2017. - Vol. 163, N 12. - P. 1740-1758. https://doi.org/https:doi.org/10.1099/mic.0.000578
7. Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis / L. Baker [et al.] // Emerg. Infect. Dis. - 2004. - Vol. 10, N 9. - P. 1568-1577. https://doi.org/https:doi.org/10.3201/eid1009.040046
8. Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing family / M. EbrahimiRad [et al.] // Emerg. Infect. Dis. - 2003. - Vol. 9, N 7. - P. 838-845. https://doi.org/https:doi.org/10.3201/eid0907.020803
9. Neeley, W. L. Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products / W. L. Neeley, J. M. Essigmann // Chem. Res. Toxicol. - 2006. - Vol. 19, N 4. - P. 491-505. https://doi.org/10.1021/tx0600043
10. Mestre, O. Phylogeny of Mycobacterium tuberculosis Beijing strains constructed from polymorphisms in genes involved in DNA replication, recombination and repair / O. Mestre, T. Luo, T. Dos Vultos // PloS ONE. - 2011. - Vol. 6, N 1. - Art. e16020. https://doi.org/10.1371/journal.pone.0016020
11. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence / S. Cole [et al.] // Nature. - 1998. - Vol. 393, N 6685. - P. 537-544. https://doi.org/10.1038/31159
12. Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set / I. Filliol [et al.] // J. Bacteriol. - 2006. - Vol. 188, N 2. - P. 759-772. https://doi.org/10.1128/JB.188.2.759- 772.2006
13. Arnold, C. Molecular evolution of Mycobacterium tuberculosis / C. Arnold // Clin. Microbiol. Infection. - 2007. - Vol. 13, N 2. - P. 120-128. https://doi.org/10.1111/j.1469-0691.2006.01637.x
14. DNA repair in Mycobacterium tuberculosis revisited / T. Dos Vultos [et al.] // FEMS Microbiol. Rev. - 2009. - Vol. 33, N 3. - P. 471-487. https://doi.org/10.1111/j.1574-6976.2009.00170.x
15. Essential roles for imuA′-and imuB-encoded accessory factors in DnaE2-dependent mutagenesis in Mycobacterium tuberculosis / D. F. Warner [et al.] // Proc. Nat. Acad. Sci. - 2010. - Vol. 107, N 29. - P. 13093-13098. https://doi.org/10.1073/pnas.1002614107
16. Shuman, S. Bacterial DNA repair by non-homologous end joining / S. Shuman, M. Glickman // Nat. Rev. Microbiol. - 2007. - Vol. 5. - P. 852-861. https://doi.org/10.1038/nrmicro1768
17. Kurthkoti K. Base excision and nucleotide excision repair pathways in mycobacteria / K. Kurthkoti, U. Varshney // Tuberculosis. - 2011. - Vol. 91, N 6. - P. 533-543. https://doi.org/10.1016/j.tube.2011.06.005
18. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination / S. Sreevatsan [et al.] // Proc. Nat. Acad. Sci. - 1997. - Vol. 94, N 18. - P. 9869-9874. https://doi. org/10.1073/pnas.94.18.9869
19. The PGRS domain of Mycobacterium tuberculosis PE_PGRS protein Rv0297 is involved in endoplasmic reticulum stress-mediated apoptosis through toll-like receptor 4 / S. Grover [et al.] // MBio. - 2018. - Vol. 9, N 3. - P. e01017-18. https:// https://doi.org/doi.org/10.1128/mBio.01017-18
20. Mohareer, K. Transcriptional regulation of Mycobacterium tuberculosis PE/PPE genes: a molecular switch to virulence / K. Mohareer, S. Tundup, S. E. Hasnain // Microb. Physiol. - 2011. - Vol. 21, N 3-4. - P. 97-109. https://doi.org/10.1159/ 000329489
21. PE_PGRS proteins of Mycobacterium tuberculosis: a specialized molecular task force at the forefront of host-pathogen interaction / F. De Maio [et al.] // Virulence. - 2020. - Vol. 11, N 1. - P. 898-915. https://doi.org/10.1080/21505594.2020.1785815
22. Frequent homologous recombination events in Mycobacterium tuberculosis PE/PPE multigene families: potential role in antigenic variability / A. Karboul [et al.] // J. Bacteriol. - 2008. - Vol. 190, N 23. - P. 7838-7846. https://doi.org/10.1128/ JB.00827-08
23. The PE/PPE multigene family codes for virulence factors and is a possible source of mycobacterial antigenic variation: perhaps more? / Y. Akhter [et al.] // Biochimie. - 2012. - Vol. 94, N 1. - P. 110-116. https://doi.org/10.1016/j.biochi.2011.09.026
24. Evidence that mycobacterial PE_PGRS proteins are cell surface constituents that influence interactions with other cells / M. J. Brennan [et al.] // Infect. Immun. - 2001. - Vol. 69, N 12. - P. 7326-7333. https://doi.org/10.1128/IAI.69.12.7326- 7333.2001
25. Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: interlaboratory study of discriminatory power and reproducibility/ K. Kremer [et al.] // J. Clin. Microbiol. - 1999. - Vol. 37, N 8. - P. 2607-2618. https://doi.org/10.1128/JCM.37.8.2607-2618.1999
26. Execution of macrophage apoptosis by PE_PGRS33 of Mycobacterium tuberculosis is mediated by Toll-like receptor 2-dependent release of tumor necrosis factor-α / S. Basu [et al.] // J. Biol. Chem. - 2007. - Vol. 282, N 2. - P. 1039-1050. https://doi.org/10.1074/jbc.M604379200
27. Cadieux, N. Induction of cell death after localization to the host cell mitochondria by the Mycobacterium tuberculosis PE_PGRS33 protein / N. Cadieux, M. Parra, H. Cohen // Microbiology. - 2011. - Vol. 157 (pt. 3). - P. 793-804. https://doi. org/10.1099/mic.0.041996-0
28. The PGRS domain from PE_PGRS33 of Mycobacterium tuberculosis is target of humoral immune response in mice and humans / I. Cohen [et al.] // Front. Immunol. - 2014. - Vol. 27, N 5. - Art. 236. https://doi.org/10.3389/fimmu.2014.00236
29. Comparative analysis of Mycobacterium tuberculosis pe and ppe genes reveals high sequence variation and an apparent absence of selective constraints / C. R. McEvoy [et al.] // PloS ONE. - 2012. - Vol. 7, N 4. - Art. e30593. https://doi. org/10.1371/journal.pone.0030593
30. CryoEM structures of open dimers of gyrase A in complex with DNA illuminate mechanism of strand passage / K. M. Soczek [et al.] // Elife. - 2018. - Vol. 20, N 7. - Art. e41215. https://doi.org/10.7554/eLife.41215
31. Wang, J. C. Cellular roles of DNA topoisomerases: a molecular perspective / J. C. Wang // Nat. Rev. Mol. Cell Biol. - 2002. - Vol. 3, N 6. - P. 430-440. https://doi.org/10.1038/nrm831
32. The first study on the impact of osmolytes in whole cells of high temperature-adapted microorganisms / M. SalvadorCastell [et al.] // Soft Matter. - 2019. - Vol. 15, N 41. - P. 8381-8391. https://doi.org/10.1039/C9SM01196J
33. The more adaptive to change, the more likely you are to survive: Protein adaptation in extremophiles / C. Brininger [et al.] // Seminars in Cell & Developmental Biology. - Academic Press, 2018. - Vol. 84. - P. 158-169. https://doi.org/10.1016/j. semcdb.2017.12.016
34. Feller, G. Protein folding at extreme temperatures: Current issues / G. Feller // Seminars in Cell & Developmental Biology. - Academic Press, 2018. - Vol. 84. - P. 129-137. https://doi.org/10.1016/j.semcdb.2017.09.003
35. Genotype of a historic strain of Mycobacterium tuberculosis / A. S. Bouwman [et al.] // Proc. Nat. Acad. Sci. - 2012. - Vol. 109, N 45. - P. 18511-18516. https://doi.org/10.1073/pnas.1209444109
36. Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis / L. Baker [et al.] // Emerg. Infect. Dis. - 2004. - Vol. 10, N 9. - P. 1568-1577. https://doi.org/10.3201/eid1009.040046
37. Contribution of horizontally acquired genomic islands to the evolution of the tubercle bacilli / J. Becq [et al.] // Mol. Biol. Evol. - 2007. - Vol. 24, N 8. - P. 1861-1871. https://doi.org/10.1093/molbev/msm111