Vitamin D status during the COVID-19 pandemic: the experience of Russia and Belarus
https://doi.org/10.29235/1814-6023-2022-19-4-424-432
Abstract
During the COVID-19 pandemic, a high prevalence of vitamin D deficiency and insufficiency remains. Thus, the studies carried out on the territory of the Russian Federation (RF) and the Republic of Belarus over the last 3 years have shown the prevalence of vitamin D deficiency and insufficiency in the population, regardless of the gender of examined persons, the geographic location and the season of the year. Taking into account the known immunomodulatory functions of serum 25(OH)D, the aim of this review was to assess the data that were accumulated in the world, Russia and Belarus and were concerned with a possible contribution of vitamin D deficiency to COVID-19 infection, course and prognosis, as well as with the role of cholecalciferol therapy in prevention and treatment of the disease. Most of the studies demonstrate a negative association between the serum 25(OH)D level and COVID-19 severity and/or mortality. Previously, it has been shown that the serum 25(OH)D level less than 11.4 ng/ml is associated with an increased risk of COVID-19 mortality. At the same time, the results of the studies using cholecalciferol therapy for COVID-19 prevention and treatment are conflicting. Intervention studies in the Russian Federation and the Republic of Belarus are scanty; however, the available data indicate a possible benefit of therapy, which allows it to be considered as an addition to the main methods of treating COVID-19.
Keywords
About the Authors
T. L. KaronovaRussian Federation
Tatiana L. Karonova – D. Sc. (Med.), Associate Professor, Almazov National Medical Research Centre.
15, Parkhomenko Ave., 194021, St. Petersburg
E. V. Rudenco
Belarus
Elena V. Rudenco – Ph. D. (Med.), Associate Professor, Belarusian Medical Academy of Postgraduate Education.
3/3, P. Brovka Str., 220013, Minsk
O. A. Radaeva
Russian Federation
Olga A. Radaeva – Ph. D. (Med.), Associate Professor, Ogarev Mordovia State University.
68, Bol’shevistskaya Str., 430005, Saransk
A. T. Chernikova
Russian Federation
Alena T. Chernikova – Junior Researcher, Almazov National Medical Research Centre.
15, Parkhomenko Ave., 194021, St. Petersburg
K. A. Golovatyuk
Russian Federation
Ksenia A. Golovatyuk – Junior Researcher, Almazov National Medical Research Centre.
15, Parkhomenko Ave., 194021, St. Petersburg
E. V. Shlyakhto
Russian Federation
Evgeny V. Shlyakhto – Academician, D. Sc. (Med.), Almazov National Medical Research Centre.
2, Akkuratov Str., 197341, St. Petersburg
References
1. National Library of Medicine. Available at: https://pubmed.ncbi.nlm.nih.gov/?term=covid-19%3B+vitamin+D&filter=years.2020-2021&timeline=expanded&size=100/ (accessed 30.04.2022)
2. Gaksch M., Jorde R., Grimnes G., Joakimsen R., Schirmer H., Wilsgaard T. [et al.]. Vitamin D and mortality: Individual participant data meta-analysis of standardized 25 hydroxyvitamin D in 26916 individuals from a European consortium. PLoS ONE, 2017, vol. 12, no. 2, p. e017079. https://doi.org/10.1371/journal.pone.0170791
3. Tagliabue E., Raimondi S., Gandini S. Vitamin D, cancer risk, and mortality. Advances in Food and Nutrition Research, 2015, vol. 75, pp. 1–52. https://doi.org/10.1016/bs.afnr.2015.06.003
4. Al Mheid I., Quyyumi A. A. Vitamin D and cardiovascular disease: Controversy unresolved. Journal of the American College of Cardiology, 2017, vol. 70, no. 1, pp. 89–100. https://doi.org/10.1016/j.jacc.2017.05.031
5. Berridge M. J. Vitamin D deficiency and diabetes. Biochemical Journal, 2017, vol. 474, no. 8, pp. 1321–1332. https://doi.org/10.1042/bcj20170042
6. Altieri B., Muscogiuri G., Barrea L., Mathieu C., Vallone C. V., Mascitelli L. [et al.]. Does vitamin D play a role in autoimmune endocrine disorders? A proof of concept. Reviews in Endocrine and Metabolic Disorders, 2017, vol. 18, no. 3, pp. 335–346. https://doi.org/10.1007/s11154-016-9405-9
7. Fung J. L., Hartman T. J., Schleicher R. L., Goldman M. B. Association of vitamin D intake and serum levels with fertility: Results from the Lifestyle and Fertility Study. Fertility and Sterility, 2017, vol. 108, no. 2, pp. 302–311. https://doi.org/10.1016/j.fertnstert.2017.05.037
8. Hewison M., Freeman L., Hughes S., Evans K. N., Bland R., Eliopoulos A. G., Kilby M. D., Moss P. A. H., Chakraverty R. Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells. Journal of Immunology, 2003, vol. 170, no. 11, pp. 5382–5390. https://doi.org/10.4049/jimmunol.170.11.5382
9. Ginde A. A., Mansbach J. M., Camargo C. A. (Jr.) Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey. Archives of Internal Medicine, 2009, vol. 169, no. 4, pp. 384–390. https://doi.org/10.1001/archinternmed.2008.560
10. Liu P. T., Stenger S., Li H., Wenzel L., Tan B. H., Krutzik S. R. [et al.]. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science, 2006, vol. 311, no. 5768, pp. 1770–1773. https://doi.org/10.1126/science.1123933
11. Adams J. S., Ren S., Liu P. T., Chun R. F., Lagishetty V., Gombart A. F., Borregaard N., Modlin R. L., Hewison M. Vitamin D-directed rheostatic regulation of monocyte antibacterial responses. Journal of Immunology, 2009, vol. 82, no. 7, pp. 4289–4295. https://doi.org/10.4049/jimmunol.0803736
12. Agier J., Efenberger M., Brzezińska-Błaszczyk E. Cathelicidin impact on inflammatory cells. Central European Journal of Immunology, 2015, vol. 40, no. 2, pp. 225–235. https://doi.org/10.5114/ceji.2015.51359
13. Barlow P. G., Svoboda P., Mackellar A., Nash A. A., York I. A., Pohl J., Davidson D. J., Donis R. O. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS ONE, 2011, vol. 6, no. 10, p. e25333. https://doi.org/10.1371/journal.pone.0025333
14. Cantorna M. T., Snyder L., Lin Y. D., Yang L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients, 2015, vol. 7, no. 4, pp. 3011–3021. https://doi.org/10.3390/nu7043011
15. Pham H., Rahman A., Majidi A., Waterhouse M., Neale R. E. Acute respiratory tract infection and 25-hydroxyvitamin D concentration: a systematic review and meta-analysis. International Journal of Environmental Research and Public Health, 2019, vol. 16, no. 17, art. 3020. https://doi.org/10.3390/ijerph16173020
16. Zhou J., Du J., Huang L., Wang Y., Shi Y., Lin H. Preventive effects of vitamin D on seasonal influenza in infants: a multicenter, randomized, open, controlled clinical trial. Pediatric Infectious Disease Journal, 2018, vol. 37, no. 8, pp. 749–754. https://doi.org/10.1097/INF.0000000000001890
17. Urashima M., Mezawa H., Noya M., Camargo C. A. Jr. Effects of vitamin D supplements on influenza A illness during the 2009 H1N1 pandemic: A randomized controlled trial. Food and Function Journal, 2014, vol. 5, no. 9, pp. 2365–2370. https://doi.org/10.1039/c4fo00371c
18. Ginde A. A., Blatchford P., Breese K., Zarrabi L., Linnebur S. A., Wallace J. I., Schwartz R. S. High-dose monthly vitamin D for prevention of acute respiratory infection in older longterm care residents: a randomized clinical trial. Journal of the American Geriatrics Society, 2017, vol. 65, no. 3, pp. 496–503. https://doi.org/10.1111/jgs.14679
19. Kumar R., Rathi H., Haq A., Wimalawansa S. J., Sharma A. Putative roles of vitamin D in modulating immune response and immunopathology associated with COVID-19. Virus Research, 2021, vol. 292, art. 198235. https://doi.org/10.1016/j.virusres.2020.198235
20. Dror A. A., Morozov N., Daoud A., Namir Y., Yakir O., Shachar Y. [et al.]. Pre-infection 25-hydroxyvitamin D3 levels and association with severity of COVID-19 illness. PloS ONE, 2022, vol. 17, no. 2, p. e0263069. https://doi.org/10.1371/journal.pone.0263069
21. Bikle D. D. Vitamin D regulation of immune function during COVID-19. Reviews in Endocrine and Metabolic Disorders, 2022, vol. 23, no. 2, pp. 279–285. https://doi.org/10.1007/s11154-021-09707-4
22. Vanegas-Cedillo P. E., Bello-Chavolla O. Y., Ramírez-Pedraza N., Rodríguez Encinas B., Pérez Carrión C. I., Jasso-Ávila M. I. [et al.]. Serum vitamin D levels are associated with increased COVID-19 severity and mortality independent of whole-body and visceral adiposity. Frontiers in Nutrition, 2022, vol. 9, art. 813485. https://doi.org/10.3389/fnut.2022.813485
23. Bilezikian J. P., Bikle D., Hewison M., Lazaretti-Castro M., Formenti A. M., Gupta A. [et al.]. Mechanisms in endocrinology: vitamin D and COVID-19. European Journal of Endocrinology, 2020, vol. 183, no. 5, pp. R133–R147. https://doi.org/10.1530/EJE-20-0665
24. Malmberg H. R., Hanel A., Taipale M., Heikkinen S., Carlberg C. Vitamin D treatment sequence is critical for transcriptome modulation of immune challenged primary human cells. Frontiers in Immunology, 2021, vol. 12, art. 754056. https://doi.org/10.3389/fimmu.2021.754056
25. Suplotova L. A., Avdeeva V. A., Pigarova E. A., Rozhinskaya L. Ya., Karonova T. L., Troshina E. A. The first Russian multicenter non-interventional registry study to study the incidence of vitamin D deficiency and insufficiency in Russian Federation. Terapevticheskii arkhiv [Therapeutic archive], 2021, vol. 10, pp. 1209–1216 (in Russian).
26. Karonova T. L., Grineva E. N., Nikitina I. L., Tsvetkova E. V., Todieva A. M., Belyaeva O. D. [et al.]. The prevalence of vitamin D deficiency in the Northwestern region ofthe Russian Federation among the residents of St. Petersburg and Petrozavodsk Osteoporoz i osteopatii [Osteoporosis and osteopathy], 2013, vol. 16, no. 3, pp. 3–7 (in Russian).
27. Rudenko E. V., Nazarchik I. A., Luk’yanenok D. M., Gonchar O. A., Vasyukovich S. A. Hypovitaminosis D in adults as a topical problem in the Republic of Belarus in terms of the COVID-19 pandemic. Retsept [Recipe], 2022, vol. 25, no. 1, pp. 20–30 (in Russian).
28. Karonova T. L., Andreeva A. T., Golovatyuk K. A., Bykova E. S., Skibo I. I., Grineva E. N., Shlyakhto E. V. SARS-CoV-2 morbidity depending on vitamin D status. Problemy endokrinologii [Problems of endocrinology], 2021, vol. 67, no. 5, pp. 20–28 (in Russian).
29. Kaufman H. W., Niles J. K., Kroll M. H., Bi C., Holick M. F. SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PLoS ONE, 2020, vol. 15, no. 9, p. e0239252. https://doi.org/10.1371/journal.pone.0239252
30. Carpagnano G. E., Di Lecce V., Quaranta V. N., Zito A., Buonamico E., Capozza E., Palumbo A., di Gioia G., Valerio V. N., Resta O. Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19. Journal of Endocrinological Investigation, 2021, vol. 44, no. 4, pp. 765–771. https://doi.org/10.1007/s40618-020-01370-x
31. Macaya F., Paeres C. E., Valls A., Fernández-Ortiz A., González Del Castillo J., Martín-Sánchez F. J., Runkle I., Herrera M. Á. R. Interaction between age and vitamin D deficiency in severe COVID-19 infection. Nutricion Hospitalaria, 2020, vol. 37, no. 5, pp. 1039–1042. https://doi.org/10.20960/nh.03193
32. Ye K., Tang F., Liao X., Shaw B. A., Deng M., Huang G. [et al.]. Does serum vitamin D level affect COVID-19 infection and its severity? A case-control study. Journal of the American College of Nutrition, 2021, vol. 40, no. 8, pp. 724–731. https://doi.org/10.1080/07315724.2020.1826005
33. Karonova T. L., Kudryavtsev I. V., Golovatyuk K. A., Aquino A. D., Kalinina O. V., Chernikova A. T. [et al.]. Vitamin D status and immune response in hospitalized patients with moderate and severe COVID-19. Pharmaceuticals (Basel), 2022, vol. 15, no. 3, art. 305. https://doi.org/10.3390/ph15030305
34. Karonova T. L., Andreeva A. T., Vashukova M. A. Serum 25(OH)D level in COVID-19 patients. Zhurnal infektologii [Journal of infectology], 2020, vol. 12, no. 3, pp. 21–27 (in Russian).
35. Karonova T. L., Andreeva A. T., Golovatuk K. A., Bykova E. S., Simanenkova A. V., Vashukova M. A., Grant W. B., Shlyakhto E. V. Low 25(OH)D level is associated with severe course and poor prognosis in COVID-19. Nutrients, 2021, vol. 13, no. 9, art. 3021. https://doi.org/10.3390/nu13093021
36. Ling S. F., Broad E., Murphy R., Pappachan J. M., Pardesi-Newton S., Kong M. F. [et al.]. Vitamin D treatment is associated with reduced risk of mortality in patients with COVID-19: a cross-sectional multi-centre observational study. Nutrients, 2020, vol. 12, no. 12, p. 3799. https://doi.org/10.3390/nu12123799
37. Oristrell J., Oliva J. C., Casado E., Subirana I., Domínguez D., Toloba A., Balado A., Grau M. Vitamin D supplementation and COVID-19 risk: a population-based, cohort study. Journal of Endocrinological Investigation, 2022, vol. 45, no. 1, pp. 167–179. https://doi.org/10.1007/s40618-021-01639-9
38. Torres M., Casado G., Vigón L., Rodríguez-Mora S., Mateos E., Ramos-Martín R. [et al.]. Changes in the immune response against SARS-CoV-2 in individuals with severe COVID-19 treated with high dose of vitamin D. Biomedicine Pharmacotherapy, 2022, vol. 14, no. 150, art. 112965. https://doi.org/10.1016/j.biopha.2022.112965
39. Gönen M. S., Alaylıoğlu M., Durcan E., Özdemir Y., Şahin S., Konukoğlu D. [et al.]. Rapid and effective vitamin D supplementation may present better clinical outcomes in COVID-19 (SARS-CoV-2) patients by altering serum INOS1, IL1B, IFNg, Cathelicidin-LL37, and ICAM1. Nutrients, 2021, vol. 13, no. 11, art. 4047. https://doi.org/10.3390/nu13114047
40. Alcala-Diaz J. F., Limia-Perez L., Gomez-Huelgas R., Martin-Escalante M. D., Cortes-Rodriguez B., Zambrana-Garcia J. L. [et al.]. Calcifediol treatment and hospital mortality due to COVID-19: a cohort study. Nutrients, 2021, vol. 13, no. 6, art. 1760. https://doi.org/10.3390/nu13061760
41. ClinicalTrials.gov. Available at: https://www.clinicaltrials.gov/ct2/home/ (accessed 30.04.2022).
Review
For citations:
Karonova T.L., Rudenco E.V., Radaeva O.A., Chernikova A.T., Golovatyuk K.A., Shlyakhto E.V. Vitamin D status during the COVID-19 pandemic: the experience of Russia and Belarus. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2022;19(4):424-432. (In Russ.) https://doi.org/10.29235/1814-6023-2022-19-4-424-432