Preview

Proceedings of the National Academy of Sciences of Belarus, Medical series

Advanced search

Gut-liver axis: physeology through the prism of the microbiome

https://doi.org/10.29235/1814-6023-2022-19-4-413-423

Abstract

This paper presents a brief historical description of the evolution of views on the development of the concept of the gut liver axis functioning and its physiological aspects. The “new virtual human organ” physiological fundamentals and their role in the pathogenesis of chronic liver diseases, including late post-transplant period, are described and discussed.

Based on own experience, results of a new generation sequencing describing the characteristics of the microbiome palette in patients suffering from chronic liver diseases of various etiologies are presented. Personal study was based on 12 patients suffering chronic liver disease, who were examined before and after liver transplantation. The obtained results indicate the importance of the intestinal microbiome in the natural process of recovery after liver transplantation.

About the Authors

U. R. Salimov
Minsk Scientific Practical Center of Surgery, Transplantology and Hematology
Belarus

Umid R. Salimov – Ph. D. (Med.), Doctoral student, Minsk Scientific and Practical Center of Surgery, Transplantology and Hematology.

8, Semashko Str., 220045, Minsk



I. O. Stoma
Gomel State Medical University
Belarus

Igor O. Stoma – D. Sc. (Med.), Professor, Rector, Gomel State Medical University.

5, Lange Str., 246000, Gomel



A. A. Kovalev
Gomel State Medical University
Belarus

Aliaksei A. Kovalev ‒ senior lecturer, Gomel State Medical University.

5, Lange  Str.,  246000,  Gomel



A. E. Scherba
Minsk Scientific Practical Center of Surgery, Transplantology and Hematology
Belarus

Aliaksei E. Shcherba – D. Sc. (Med.), Deputy Director, Minsk Scientific and Practical Center of Surgery, Transplantology and Hematology.

8, Semashko Str., 220045, Minsk



I. P. Shturich
Minsk Scientific Practical Center of Surgery, Transplantology and Hematology
Belarus

Ivan P. Shturich ‒ Ph. D. (Med.), Associate Professor, Head of the Department, Minsk Scientific and Practical Center of Surgery, Transplantology and Hematology.

8, Semashko Str., 220045, Minsk



O. O. Rummo
Minsk Scientific Practical Center of Surgery, Transplantology and Hematology
Belarus

Oleg O. Rummo ‒ Academician, D. Sc. (Med.), Professor, Director, Minsk Scientific and Practical Center of Surgery, Transplantology and Hematology.

8, Semashko Str., 220045, Minsk



References

1. Volta U., Bonazzi C., Bianchi F. B., Baldoni А. M., Zoli M., Pisi E. IgA antibodies to dietary antigens in liver cirrhosis. La Ricerca in Clinica e in Laboratorio, 1987, vol. 17, no. 3, pp. 235–242. https://doi.org/10.1007/BF02912537

2. Vajros P., Paolella G., Fasano A. Microbiota and gut-liver axis: their influences on obesity and obesity-related liver disease. Journal of Pediatric Gastroenterology and Nutrition, 2013, vol. 56, no. 5, pp. 461‒468. https://doi.org/10.1097/MPG.0b013e318284abb5

3. Ancona G., Alagna L., Lombardi A., Palomba E., Castelli V., Renisi G. [et al.]. The interplay between gut microbiota and the immune system in liver transplant recipients and its role in infections. Infection and Immunity, 2021, vol. 89, no. 11, p. e0037621. https://doi.org/10.1128/IAI.00376-21

4. Milosevic I., Vujovic A., Barac A., Djelic M., Korac M., Radovanovic Spurnic A. [et al.]. Gut microbiota, and its modulation in the management of liver diseases: a review of the literature. International Journal of Molecular Sciences, 2019, vol. 20, no. 2, p. 395. https://doi.org/10.3390/ijms20020395

5. Tilg H., Burcelin R., Tremaroli V. Liver tissue microbiome in NAFLD: next step in understanding the gut-liver axis? Gut, vol. 69, no. 8, pp. 1373‒1374. https://doi.org/10.1136/gutjnl-2019-320490

6. Solé C., Guilly S., Da Silva K., Llopis M., Le-Chatelier E., Huelin P. [et al.]. Alterations in gut microbiome in cirrhosis as assessed by quantitative metagenomics: relationship with acute-on-chronic liver failure and prognosis. Gastroenterology, vol. 160, no. 1, pp. 206‒218.e13. https://doi.org/10.1053/j.gastro.2020.08.054

7. Lee G.-H. Hepatic encephalopathy in acute-on-chronic liver failure. Hepatology International, vol. 9, no. 4, pp. 520‒526. https://doi.org/10.1007/s12072-015-9626-0

8. Stoma I. O., Karpov I. A. Human microbiome. Minsk, DoktorDizain Publ., 2018. 122 p. (in Russian).

9. Blesl A., Stadlbauer V. The gut-liver axis in cholestatic liver diseases. Nutrients, 2021, vol. 13, no. 3, art. 1018. https://doi.org/10.3390/nu13031018

10. Rey K., Manku S., Enns W., Van Rossum T., Bushell K., Morin R. D., Brinkman F. S. L., Choy J. C. Disruption of the gut microbiota with antibiotics exacerbates acute vascular rejection. Transplantation, 2018, vol. 102, no. 7, pp. 1085‒1095. https://doi.org/10.1097/TP.0000000000002169

11. Pirozzolo I., Li Z., Sepulveda M., Alegre M.-L. Influence of the microbiome on solid organ transplant survival. Journal of Heart and Lung Transplantation, vol. 40, no. 8, pp. 745‒753. https://doi.org/10.1016/j.healun.2021.04.004

12. Albillos A., de Gottardi A., Rescigno M. The gut-liver axis in liver disease: pathophysiological basis for therapy. Journal of Hepatology, 2020, vol. 72, no. 3, pp. 558‒577. https://doi.org/10.1016/j.jhep.2019.10.003

13. Kim S.-I. Bacterial infection after liver transplantation. World Journal of Gastroenterology, 2014, vol. 20, no. 20, pp. 6211‒6220. https://doi.org/10.3748/wjg.v20.i20.6211

14. Brandl K., Kumar V., Eckmann L. Gut-liver axis at the frontier of host-microbial interactions. American Journal of Physiology. Gastrointestinal and Liver Physiology, vol. 312, no. 5, pp. G413‒G419. https://doi.org/10.1152/ajpgi.00361.2016

15. Van der Sluis M., De Koning B. A., De Bruijn A. C., Velcich A., Meijerink J. P., Van Goudoever J. B. [et al.]. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology, 2006, vol. 131, no. 1, pp. 117–129. https://doi.org/10.1053/j.gastro.2006.04.020

16. Bergström J. H., Birchenough G. M. H., Katona G., Schroeder B. O., Schütte A., Ermund A., Johansson M. E. V., Hansson G. C. Gram-positive bacteria are held at a distance in the colon mucus by the lectin-like protein ZG16. Proceedings of the National Academy of Sciences of the United States of America, 2016, vol. 113, no. 48, pp. 13833‒13838. https://doi.org/10.1073/pnas.1611400113

17. Bel S., Pendse M., Wang Y., Li Y., Ruhn K. A., Hassell B., Leal T., Winter S. E., Xavier R. J., Hooper L. V. Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine. Science, 2017, vol. 357, no. 6355, pp. 1047‒1052. https://doi.org/10.1126/science.aal4677

18. Velcich A., Yang W., Heyer J., Fragale A., Nicholas C., Viani S., Kucherlapati R., Lipkin M., Yang K., Augenlicht L. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science, 2002, vol. 295, no. 5560, pp. 1726–1729. https://doi.org/10.1126/science.1069094

19. Spadoni I., Fornasa G., Rescigno M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nature Reviews Immunology, 2017, vol. 17, no. 12, pp. 761‒773. https://doi.org/10.1038/nri.2017.100

20. Vaishnava S., Yamamoto M., Severson K. M., Ruhn K. A., Yu X., Koren O., Ley R., Wakeland E. K., Hooper L. V. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science, 2011, vol. 334, no. 6053, pp. 255‒258. https://doi.org/10.1126/science.1209791

21. Romanque U. P., Uribe M. M., Videla L. A. Molecular mechanisms in liver ischemic-reperfusion injury and ischemic preconditioning. Revista médica de Chile, vol. 133, no. 4, pp. 469‒476. https://doi.org/10.4067/s0034-98872005000400012

22. Suzuki T. Regulation of the intestinal barrier by nutrients: The role of tight junctions. Animal science journal = Nihon chikusan Gakkaihō, vol. 91, no. 1, p. e13357. https://doi.org/10.1111/asj.13357

23. Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cellular and molecular life sciences: CMLS, vol. 70, no. 4, pp. 631‒659. https://doi.org/10.1007/s00018-012-1070-x

24. Dokladny K., Zuhl M. N., Moseley P. L. Intestinal epithelial barrier function and tight junction proteins with heat and exercise. Journal of Applied Physiology, 2016, vol. 120, no. 6, pp. 692‒701. https://doi.org/10.1152/japplphysiol.00536.2015

25. Allam-Ndoul B., Castonguay-Paradis S., Veilleux A. Gut microbiota and intestinal trans-epithelial permeability. International Journal of Molecular Sciences, vol. 21, no. 17, p. 6402. https://doi.org/10.3390/ijms21176402

26. Camus C. Complications infectieuses chez le transplanté hépatique. Réanimation, 2014, vol. 23, pp. 317‒326. https://doi.org/10.1007/s13546-014-0888-7

27. Peterson L. W., Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nature Reviews. Immunology, 2014, vol. 14, no. 3, pp. 141–153. https://doi.org/10.1038/nri3608

28. Moore W. E., Holdeman L. V. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Applied Microbiology, 1974, vol. 27, no. 5, pp. 961‒979. https://doi.org/10.1128/am.27.5.961-979.1974

29. Yang X., Lu D., Zhuo J., Lin Z., Yang M., Xu X. The gut-liver axis in immune remodeling: new insight into liver diseases. International Journal of Biology Sciences, 2020, vol. 16, no. 13, pp. 2357‒2366. https://doi.org/10.7150/ijbs.46405

30. Doré J., Corthier G. Le microbiote intestinal humain. Gastroentérologie Clinique et Biologique, 2010, vol. 34, suppl. 1, pp. S7‒S15 (in French). https://doi.org/10.1016/S0399-8320(10)70015-4

31. Holdeman L. V., Good I. J., Moore W. E. Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Applied and Environmental Microbiology, 1976, vol. 31, no. 3, pp. 359‒375. https://doi. org/10.1128/aem.31.3.359-375.1976

32. Yu L.-X., Schwabe R. F. The gut microbiome and liver cancer: mechanisms and clinical translation. Nature Reviews Gastroenterology and Hepatology, 2017, vol. 14, no. 9, pp. 527–539. https://doi.org/10.1038/nrgastro.2017.72

33. Kim C. H., Park J., Kim M. 2014. Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Network, 2014, vol. 14, no. 6, pp. 277–288. https://doi.org/10.4110/in.2014.14.6.277

34. Acharya C., Sahingur S. E., Bajaj J. S. Microbiota, cirrhosis, and the emerging oral-gut-liver axis. JCI Insight, vol. 2, no. 19, p. e94416. https://doi.org/10.1172/jci.insight.94416

35. Merritt M. E., Donaldson J. R. Effect of bile salts on the DNA and membrane integrity of enteric bacteria. Journal of Medical Microbiology, 2009, vol. 58, pt. 12, pp. 1533–1541. https://doi.org/10.1099/jmm.0.014092-0

36. Mortha A., Chudnovskiy A., Hashimoto D., Bogunovic M., Spencer S. P., Belkaid Y., Merad M. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science, 2014, vol. 343, no. 6178, art. 1249288. https://doi.org/10.1126/science.1249288

37. Koh Y.-C., Yang G., Lai C.-S., Weerawatanakorn M., Pan M.-H. Chemopreventive effects of phytochemicals and medicines on M1/M2 polarized macrophage role in inflammation-related diseases. International Journal of Molecular Sciences, 2018, vol. 19, no. 8, art. 2208. https://doi.org/10.3390/ijms19082208

38. Llorente C., Schnabl B. Fast-track clearance of bacteria from the liver. Cell Host and Microbe, 2016, vol. 20, no. 1, pp. 1–2. https://doi.org/10.1016/j.chom.2016.06.012

39. Broadley S. P., Plaumann A., Coletti R., Lehmann C., Wanisch A., Seidlmeier A. [et al.]. Dual-track clearance of circulating bacteria balances rapid restoration of blood sterility with induction of adaptive immunity. Cell Host and Microbe, 2016, vol. 20, no. 1, pp. 36–48. https://doi.org/10.1016/j.chom.2016.05.023


Review

For citations:


Salimov U.R., Stoma I.O., Kovalev A.A., Scherba A.E., Shturich I.P., Rummo O.O. Gut-liver axis: physeology through the prism of the microbiome. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2022;19(4):413-423. (In Russ.) https://doi.org/10.29235/1814-6023-2022-19-4-413-423

Views: 262


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)