Assessment of the morphological state of maxillofacial system in patients with malocclusion class II using cephalometric image
https://doi.org/10.29235/1814-6023-2022-19-2-178-186
Abstract
The aim was to study the analysis of cephalometric images of patients with distal occlusion of the dentition. The parameters obtained on cephalometric images were studied, divided into groups according to the principle of measurements (linear, angular) and their morphological affiliation (cranial, gnathic, dentoalveolar). Analysis of angular and linear cephalometric indicators of patients with malocclusion class II of the dentition made it possible to determine the mutual influence of cranial, gnathic and dental alveolar parameters. The position of the apical base of the upper jaw in the sagittal plane and the position of the chin protrusion relative to the anterior part of the skull base correspond to the average values of the age norm. The angle characterizing the relationship between the plane of the base of the upper and lower jaws is reduced. Angular parameters characterizing the ratio of the anterior points of the apical bases of the upper and lower jaws, the position of the plane of the base of the lower jaw relative to the anterior part of the base of the skull, the total angle Bjork is reduced. The position of the plane of the base of the upper jaw relative to the anterior part of the base of the skull corresponds to the average values of the age norm. The protrusion of the incisors of both the upper and lower jaws is caused by certain changes in their angles of inclination. Changes in the gnathic parameters of cephalometric images had deviations from the norm both in the direction of increase and in the direction of decrease.
About the Authors
M. A. PostnikovRussian Federation
Mikhail A. Postnikov – D. Sc. (Med.), Associate Professor
89, Chapaevskaya Str., 443099, Samara
D. A. Kuznetsov
Russian Federation
Denis А. Kuznetsov – orthodontist
1, Sosnovaya alley, 125367, Moscow
S. P. Rubnikovich
Belarus
Sergey P. Rubnikovich – Corresponding Member, D. Sc. (Med.), Professor
83, Dzerzhinski Ave., 220116, Minsk
Yu. L. Denisova
Belarus
Yuliya L. Denisova – D. Sc. (Med.), Professor
83, Dzerzhinski Ave., 220116, Minsk
G. V. Kuznetsova
Russian Federation
Galina V. Kuznetsova ‒ Ph. D. (Med.), Associate Professor
20/1, Delegatskaya Str., 127473, Moscow
N. V. Pankratova
Russian Federation
Natalya V. Pankratova ‒ Ph. D. (Med.), Associate Professor
20/1, Delegatskaya Str., 127473, Moscow
A. I. Agashina
Russian Federation
Alina I. Agashina – Resident
20/1, Delegatskaya Str., 127473, Moscow
E. M. Postnikova
Russian Federation
Elizaveta M. Postnikova – student
19/2, Bolshaya Pirogovskaya Str., 127055, Moscow
References
1. Dodson T. B. Role of computerized tomography in management of impacted mandibular third molars. New York State Dental Journal, 2005, vol. 71, no. 96, pp. 32–35.
2. Auconi P., Caldarelli G., Scala A., Ierardo G., Polimeni A. A network approach to orthodontic diagnosis. Orthodontics and Craniofacial Research, 2011, vol. 14, no. 4, pp. 189–197. https://doi.org/10.1111/j.1601-6343.2011.01523.x
3. Rubnikovich S. P., Denisova Yu. L., Vladimirskaya T. E., Andreeva V. A., Kvacheva Z. B., Panasenkova G. Yu., Volotovskii I. D. Regenerative cell technologies for gingival recession treatment. Sovremennye tekhnologii v meditsine [Modern technologies in medicine], 2018, vol. 10, no. 4, pp. 94‒104 (in Russian).
4. Rubnikovich S. P., Khomich I. S., Denisova Yu. L. Morphological changes in bone tissue around dental implants after low-intensity ultrasound applications. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya medytsynskikh navuk = Proceedings of the National Academy of Sciences of Belarus. Medical series, 2020, vol. 17, no. 1, pp. 20‒27 (in Russian).
5. Rubnikovich S. P., Maizet A. I., Denisova Yu. L., Bykova N., Arutyunov A., Kopylova I. A., Avanesyan R. A. The effect of magnetophototherapy on morphological changes of tissues of pathologically changed periodontium. Meditsinskii vestnik Severnogo Kavkaza = Medical news of the North Caucasus, 2017, vol. 12, no. 3, pp. 303‒307. https://doi.org/10.14300/mnnc.2017.12095
6. Rubnikovich S. P., Denisova Yu. L., Fomin N. A. Digital laser speckle technologies in measuring blood flow in biotissues and the stressed-strained state of the maxillodental system. Journal of Engineering Physics and Thermophysics, 2017, vol. 90, no. 6, pp. 1513‒1523. https://doi.org/10.1007/s10891-017-1713-8
7. Denisova Yu. L., Bazylev N. B., Rubnikovich S. P., Fomin N. A. Laser speckle technology in stomatology. Diagnostics of stresses and strains of hard biotissues and orthodontic and orthopedic structures. Journal of Engineering Physics and Thermophysics, 2013, vol. 86, no. 4, pp. 940‒951. https://doi.org/10.1007/s10891-013-0915-y
8. Bazylev N. B., Rubnikovich S. P. Investigation of the stressed-strained state of cermet dentures using digital laser speckle-photographic analysis. Journal of Engineering Physics and Thermophysics, 2009, vol. 82, no. 4, pp. 789‒793. https://doi.org/10.1007/s10891-009-0247-0
9. Bazulev N., Fomin N., Lavinskaya E., Mizukaki T., Takayama K., Hirano T. [et al.]. Laser monitor for soft and hard biotissue analysis using dynamic speckle photography. Journal of Laser Physics, 2003, vol. 13, no. 5, pp. 786‒795.
10. Templeton K. M., Powell R., Moore M. B., Williams A. C., Sandy J. R. Are the Peer Assessment Rating Index and the Index of Treatment Complexity, Outcome, and Need suitable measures for orthognathic. European Journal of Orthodontics, 2006, no. 5, pp. 462–466.
11. Domenyuk D. A., Vedeshina E. G., Dmitrienko S. V. Certain parameters of incomplete dental arches with missing premolars after orthodontic treatment. III Japanese-Russian International conference on socially significant human diseases: medical, environmental and technical problems, and these solutions (Obihiro, Japan, June 16, 2016). Obihiro, Japan, 2016, pp. 81–82.
12. Kirzioğlu Z., Karayilmaz H., Baykal B. Value of computed tomography (CT) in imaging the morbidity of submerged molars: a case report. European Journal of Dentistry, 2007, no. 1, pp. 246–250.
13. Scarfe W. C., Farman A. G., Sukovic P. Clinical applications of cone-beam computed tomography in dental practice. Journal of Canadian Dental Association, 2006, vol. 72, pp. 75–80.
14. Gioeva Yu. A., Yagublu I. A., Lineva O. A. Comparative analysis of the digital values of the results of studies of the movements of the lower jaw and the state of posture in patients 12‒15 years old with sagittal occlusion anomalies. Ortodontiya [Orthodontics], 2015, no. 1, pp. 18–22 (in Russian).
15. Tabakhova O. V., Kuznetsova G. V., Kuznetsov D. A., Kuznetsova T. E. Analysis of plaster models of dentition in patients with partial primary adentia using modern anthropometric diagnostic methods. Ortodontiya [Orthodontics], 2009, no. 1, pp. 8–11 (in Russian).
16. Kuznetsov D. A. Application of the innovative computer program for the analysis of teleroentgenograms “SimplyCeph” in the comparative analysis of the parameters of patients with physiological occlusion of the dentition with the average values of the age norm. Institut stomatologii [Institute of dentistry], 2020, no. 2, pp. 45–47 (in Russian).
17. Trezubov V. N., Bulycheva E. A., Chikunov S. O., Trezubov V. V., Alpat’eva Yu. V. Cephalometric study of the facial skeleton when planning the elimination of deformities of the occlusal surface of the dentition. Institut stomatologii [Institute of dentistry], 2015, no. 4, pp. 102–104 (in Russian).
18. Postnikov M. A., Stepanov G. V., Pankratova N. V., Repina T. V. Computer cephalometric analysis in the DOLPHIN IMAGING program when planning orthodontic treatment. Ortodontiya [Orthodontics], 2017, no. 3, p. 86 (in Russian).
19. Bacetti T., Franchi L., McNamara J. A. Jr. An improved version of the cervical vertebral manuration (CVM) method for the assessment of mandibular growth. Angle Orthodontist, 2002, vol. 72, no. 4, pp. 316–323. https://doi.org/10.1043/0003-3219(2002)072<0316:AIVOTC>2.0.CO;2
20. Castillo J. C., Gianneschi G., Azer D., Manosudprasit A., Haghi A., Bansal N., Allareddy V., Masoud M. I. The relationship between 3D dentofacial photogrammetry measurements and traditional cephalometric measurements. Angle Orthodontist, 2019, vol. 89, no. 2, pp. 275–283. https://doi.org/10.2319/120317-825.1
21. Lepilin А. V., Fomin I. V., Domenyuk D. A., Dmitrienko S. V., Budaychiev G. M-A. Diagnostic value of cephalometric parameters at graphic reproduction of tooth dental arches in primary teeth occlusion. Archiv Euromedica, 2018, vol. 8, no. 1, pp. 37–38.
22. Postnikov M. A., Slesarev O. V., Trunin D. A., Andriyanov D. A., Ispanova S. N. Automated analysis of X-ray images of the temporomandibular joint in patients with orthognathic bite and physiological occlusion. Vestnik rentgenologii i radiologii = Journal of radiology and nuclear medicine, 2019, vol. 100, no. 1, pp. 6‒14 (in Russian).
23. Anikeenko A. A., Bogdashevskaya V. B., Labotkina R. O. Cephalometric standards of the skull in children aged 7‒12 and 11‒15. Moscow, Moscow Medical Dental Institute named after N. A. Semashko, 1989. 22 p. (in Russian).
Review
For citations:
Postnikov M.A., Kuznetsov D.A., Rubnikovich S.P., Denisova Yu.L., Kuznetsova G.V., Pankratova N.V., Agashina A.I., Postnikova E.M. Assessment of the morphological state of maxillofacial system in patients with malocclusion class II using cephalometric image. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2022;19(2):178-186. (In Russ.) https://doi.org/10.29235/1814-6023-2022-19-2-178-186