Preview

Proceedings of the National Academy of Sciences of Belarus, Medical series

Advanced search

The efficiency of remote ischemic postconditioning of the myocardium in rats with induced metabolic syndrome depends on the leptin level

https://doi.org/10.29235/1814-6023-2022-19-1-38-47

Abstract

Remote postconditioning (RPost) has a great therapeutic potential for protecting the myocardium during ischemiareperfusion in clinical practice. At the same time, an important problem limiting the use of conditioning effects in the clinic is the presence of metabolic disorders in the patient. The aim of this work was to assess the effect of induced metabolic syndrome (iMetS) on the efficacy of the infarct-limiting effect of remote ischemic postconditioning (RPost) in rats and to study the mechanisms of this effect.

The study was carried out on Wistar rats. MetS was induced by high-carbohydrate high-fat diet. Criteria of metabolic syndrome were an increase in the weight of animals, abdominal fat volume, the development of arterial hypertension, hypercholesterolemia, an increase in triglycerides in serum, hyperleptinemia, hyperglycemia, the development of a state of insulin resistance by a significant increase in the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index and glucose tolerance. All animals were subjected to 45 min coronary occlusion and 120 min reperfusion.

RPost led to a twofold reduction of infarct size in rats with intact metabolism (р < 0.0001), while in rats with iMetS a decrease in infarct size during RPost was 25 % (p = 0.00003), which was significantly lower than in animals without iMetC (р < 0.0001). A direct correlation was found between of infarct size during RPost and the serum leptin level of rats with iMetC.

The presented data suggested that a decrease in the efficiency of remote postconditioning in rats with diet-induced metabolic syndrome depends on leptin content in blood.

About the Authors

N. V. Naryzhnaya
Cardiology Research Institute of Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Natalia V. Naryzhnaya - D. Sc. (Med.), Leading Researcher, Cardiology Research Institute of Tomsk National Research Medical Center of the Russian Academy of Sciences.

111А, Kievskaya Str., 634012, Tomsk.



S. V. Logvinov
Cardiology Research Institute of Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University
Russian Federation

Sergey V. Logvinov - D. Sc. (Med.), Professor, Head of the Department, Cardiology Research Institute of Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University.

111А, Kievskaya Str., 634012, Tomsk; 2, Moskovski trakt, 634050, Tomsk.



B. K. Kurbatov
Cardiology Research Institute of Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Boris K. Kurbatov - Junior Researcher, Cardiology Research Institute of Tomsk National Research Medical Center of the Russian Academy of Sciences.

111А, Kievskaya Str., 634012, Tomsk.



A. V. Mukhomedzyanov
Cardiology Research Institute of Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Alexandr V. Mukhomedzyanov - Ph. D. (Med.), Junior Researcher, Cardiology Research Institute of Tomsk National Research Medical Center of the Russian Academy of Sciences.

111А, Kievskaya Str., 634012, Tomsk.



M. A. Sirotina
Cardiology Research Institute of Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Maria A. Sirotina - Postgraduate student, Cardiology Research Institute of Tomsk National Research Medical Center of the Russian Academy of Sciences.

111А, Kievskaya Str., 634012, Tomsk.



S. N. Chepelev
Belarusian State Medical University
Belarus

Sergey N. Chepelev - Senior Lecturer, Belarusian State Medical University.

83, Dzerzhinski Ave., 220116, Minsk.



F. I. Vismont
Belarusian State Medical University
Belarus

Frantishek I. Vismont - Corresponding Member, D. Sc. (Med.), Professor, Head of the Department, Belarusian State Medical University.

83, Dzerzhinski Ave., 220116, Minsk.



L. N. Maslov
Cardiology Research Institute of Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Leonid N. Maslov - D. Sc. (Med.), Professor, Head of the Laboratory, Cardiology Research Institute of Tomsk National Research Medical Center of the Russian Academy of Sciences.

111А, Kievskaya Str., 634012, Tomsk.



References

1. Braunwald E. The war against heart failure: the Lancet lecture. Lancet, 2015, vol. 385, no. 9970, pp. 812-824. https://doi.org/10.1016/S0140-6736(14)61889-4

2. Ong S. B., Samangouei P., Kalkhoran S. B., Hausenloy D. J. The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. Journal of Molecular and Cellular Cardiology, 2015, vol. 78, pp. 23-34. https://doi.org/10.1016/j.yjmcc.2014.11.005

3. Penna C., Andreadou I., Aragno M., Beauloye C., Bertrand L., Lazou A. [et al.]. Effect of hyperglycaemia and diabetes on acute myocardial ischaemia-reperfusion injury and cardioprotection by ischaemic conditioning protocols. British Journal of Pharmacology, 2020, vol. 177, no. 23, pp. 5312-5335. https://doi.org/10.1111/bph.14993

4. Basalay M., Barsukevich V., Mastitskaya S., Mrochek A., Pernow J., Sjoquist P. O., Ackland G. L., Gourine A. V., Gourine A. Remote ischaemic pre- and delayed postconditioning - similar degree of cardioprotection but distinct mechanisms. Experimental Physiology, 2012, vol. 97, no. 8, pp. 908-917. https://doi.org/10.1113/expphysiol.2012.064923

5. Vinten-Johansen J., Shi W. The science and clinical translation of remote postconditioning. Journal of Cardiovascular Medicine (Hagerstown), 2013, vol. 14, no. 3, pp. 206-213. https://doi.org/10.2459/JCM.0b013e32835cecc6

6. Zhao Z. Q., Corvera J. S., Halkos M. E., Kerendi F., Wang N. P., Guyton R. A., Vinten-Johansen J. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. American Journal of Physiology Heart and Circulatory Physiology, 2003, vol. 285, no. 2, pp. H579-H588. https://doi.org/10.1152/ajpheart.01064.2002

7. Gutierrez-Cuevas J., Sandoval-Rodriguez A., Meza-Rios A., Monroy-Ramnez H. C., Galicia-Moreno M., Garda-Banuelos J., Santos A., Armendariz-Borunda J. Molecular mechanisms of obesity-linked cardiac dysfunction: an up-date on current knowledge. Cells, 2021, vol. 10, no. 3, p. 629. https://doi.org/10.3390/cells10030629

8. ReuBner C., Kloting I., Strasser R. H., Weinbrenner C. Postconditioning fails to reduce the infarct sizes in hearts from rats with metabolic syndrome: role of glycogen synthase kinase 3beta. Journal of Molecular and Cellular Cardiology, 2006, vol. 40, no. 6, art. 970. https://doi.org/10.1016/j.yjmcc.2006.03.150

9. Han Z., Cao J., Song D., Tian L., Chen K., Wang Y., Gao L., Yin Z., Fan Y., Wang C. Autophagy is involved in the cardioprotection effect of remote limb ischemic postconditioning on myocardial ischemia/reperfusion injury in normal mice, but not diabetic mice. PLoS ONE, 2014, vol. 9, no. 1, p. e86838. https://doi.org/10.1371/journal.pone.0086838

10. Andreadou I., Schulz R., Badimon L., Adameova A., Kleinbongard P., Lecour S. [et al.]. Hyperlipidaemia and cardioprotection: animal models for translational studies. British Journal of Pharmacology, 2020, vol. 177, no. 23, pp. 5287-5311. https://doi.org/10.1111/bph.14931

11. Baranyai T., Nagy C. T., Koncsos G., Onodi Z., Karolyi-Szabo M., Makkos A., Varga Z. V., Ferdinandy P., Giricz Z. Acute hyperglycemia abolishes cardioprotection by remote ischemic perconditioning. Cardiovascular Diabetology, 2015, vol. 14, art. 151. https://doi.org/10.1186/s12933-015-0313-1

12. Verouhis D., Sorensson P., Gourine A., Henareh L., Persson J., Saleh N. [et al.]. Long-term effect of remote ischemic conditioning on infarct size and clinical outcomes in patients with anterior ST-elevation myocardial infarction. Catheterization and Cardiovascular Interventions, 2021, vol. 97, no. 3, pp. 386-392. https://doi.org/10.1002/ccd.28760

13. Oosterlinck W., Dresselaers T., Geldhof V., Nevelsteen I., Janssens S., Himmelreich U., Herijgers P. Diabetes mellitus and the metabolic syndrome do not abolish, but might reduce, the cardioprotective effect of ischemic postconditioning. Journal of Thoracic and Cardiovascular Surgery, 2013, vol. 145, no. 6, pp. 1595-1602. https://doi.org/10.1016/j.jtcvs.2013.02.016

14. Naryzhnaya N., Kurbatov B., Gorbunov A., Derkachev I., Logvinov S., Birulina J., Maslov L. High carbohydrate high fat diet induces the production of connective tissue growth factors, increased blood pressure, and changes in the aortic wall in aged rats. FASEB Journal, 2021, vol. 35, no. S1. https://doi.org/10.1096/fasebj.2021.35.S1.05125

15. Neckar J., Szarszoi O., Herget J., Ostadal B., Kolar F. Cardioprotective effect of chronic hypoxia is blunted by concomitant hypercapnia. Physiological Research, 2003, vol. 52, no. 2, pp. 171-175.

16. GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, vol. 388, no. 10053, pp. 1659-724. https://doi.org/10.1016/S0140-6736(16)31679-8

17. Su H., Ji L., Xing W., Zhang W., Zhou H., Qian X., Wang X., Gao F., Sun X., Zhang H. Acute hyperglycaemia enhances oxidative stress and aggravates myocardial ischaemia/reperfusion injury: role of thioredoxin-interacting protein. Journal of Cellular and Molecular Medicine, 2013, vol. 17, no. 1, pp. 181-191. https://doi.org/10.1111/j.1582-4934.2012.01661.x

18. Lochner A., Genade S., Genis A., Marais E., Salie R. Long-chain free fatty acids inhibit ischaemic preconditioning of the isolated rat heart. Molecular and Cellular Biochemistry, 2020, vol. 473, no. 1-2, pp. 111-132. https://doi.org/10.1007/s11010-020-03812-9

19. Webster I., Salie R., Marais E., Fan W. J., Maarman G., Huisamen B., Lochner A. Myocardial susceptibility to ischaemia/ reperfusion in obesity: a re-evaluation of the effects of age. BMC Physiology, 2017, vol. 17, no. 1, art. 3. https://doi.org/10.1186/s12899-017-0030-y

20. Kristiansen S. B., L0fgren B., St0ttrup N. B., Khatir D., Nielsen-Kudsk J. E., Nielsen T. T., B0tker H. E., Flyvbjerg A. Ischaemic preconditioning does not protect the heart in obese and lean animal models of type 2 diabetes. Diabetologia, 2004, vol. 47, no. 10, pp. 1716-1721. https://doi.org/10.1007/s00125-004-1514-4

21. Zhu S. G., Xi L., Kukreja R. C. Type 2 diabetic obese db/db mice are refractory to myocardial ischaemic post-conditioning in vivo: potential role for Hsp20, F1-ATPase 5 and Echs1. Journal of Cellular and Molecular Medicine, 2012, vol. 16, no. 4, pp. 950-958. https://doi.org/10.1111/j.1582-4934.2011.01376.x

22. van der Mieren G., Nevelsteen I., Vanderper A., Oosterlinck W., Flameng W., Herijgers P. Angiotensin-converting enzyme inhibition and food restriction restore delayed preconditioning in diabetic mice. Cardiovascular Diabetology, 2013, vol. 12, no. 1, p. 36. https://doi.org/10.1186/1475-2840-12-36

23. Wen Z., Li J., Fu Y., Zheng Y., Ma M., Wang C. Hypertrophic adipocyte-derived exosomal miR-802-5p contributes to insulin resistance in cardiac myocytes through targeting HSP60. Obesity, 2020, vol. 28, no. 10, pp. 1932-1940. https://doi.org/10.1002/oby.22932

24. Recinella L., Orlando G., Ferrante C., Chiavaroli A., Brunetti L., Leone S. Adipokines: new potential therapeutic target for obesity and metabolic,rheumatic, and cardiovascular diseases. Frontiers in Physiology, 2020, vol. 11, p. 578966. https://doi.org/10.3389/fphys.2020.578966/full

25. Russell J. S., Griffith T. A., Helman T., Du Toit E. F., Peart J. N., Headrick J. P. Chronic type 2 but not type 1 diabetes impairs myocardial ischaemic tolerance and preconditioning in C57Bl/6 mice. Experimental Physiology, 2019, vol. 104, no. 12, pp. 1868-1880. https://doi.org/10.1113/EP088024

26. Schram K., De Girolamo S., Madani S., Munoz D., Thong F., Sweeney G. Leptin regulates MMP-2, TIMP-1 and collagen synthesis via p38 MAPK in HL-1 murine cardiomyocytes. Cellular & Molecular Biology Letters, 2010, vol. 15, no. 4, pp. 551-563. https://doi.org/10.2478/s11658-010-0027-z/html

27. Sun H. Y., Wang N. P., Halkos M., Kerendi F., Kin H., Guyton R. A., Vinten-Johansen J., Zhao Z. Q. Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Apoptosis, 2006, vol. 11, no. 9, pp. 1583-1593. https://doi.org/10.1007/s10495-006-9037-8

28. Obradovic M., Sudar-Milovanovic E., Soskic S., Essack M., Arya S., Stewart A. J., Gojobori T., Isenovic E. R. Leptin and obesity: role and clinical implication. Frontiers in Endocrinology (Lausanne), 2021, vol. 12, art. 585887. https://doi.org/10.3389/fendo.2021.585887

29. Ren J., Zhu B. H., Relling D. P., Esberg L. B., Ceylan-Isik A. F. High-fat diet-induced obesity leads to resistance to leptin-induced cardiomyocyte contractile response. Obesity, 2008, vol. 16, no. 11, pp. 2417-2423. https://doi.org/10.1038/oby.2008.38

30. Xu T.-T., Liu S.-P., Wang X.-S. Wang Amelioration of myocardial ischemia/reperfusion injury by leptin pretreatment and ischemic preconditioning in mouse. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2010, vol. 22, no. 2, pp. 105-108.


Review

For citations:


Naryzhnaya N.V., Logvinov S.V., Kurbatov B.K., Mukhomedzyanov A.V., Sirotina M.A., Chepelev S.N., Vismont F.I., Maslov L.N. The efficiency of remote ischemic postconditioning of the myocardium in rats with induced metabolic syndrome depends on the leptin level. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2022;19(1):38-47. (In Russ.) https://doi.org/10.29235/1814-6023-2022-19-1-38-47

Views: 590


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)