1. Braunwald, E. The war against heart failure: the Lancet lecture / E. Braunwald // Lancet. - 2015. - Vol. 385, N 9970. -P. 812-824. https://doi.org/10.1016/S0140-6736(14)61889-4
2. The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury / S. B. Ong [et al.] // J. Mol. Cell. Cardiol. - 2015. - Vol. 78. - P. 23-34. https://doi.org/10.1016/j.yjmcc.2014.11.005
3. Effect of hyperglycaemia and diabetes on acute myocardial ischaemia-reperfusion injury and cardioprotection by ischaemic conditioning protocols / C. Penna [et al.] // Br. J. Pharmacol. - 2020. - Vol. 177, N 23. - P. 5312-5335. https://doi.org/10.1111/bph.14993
4. Remote ischaemic pre- and delayed postconditioning - similar degree of cardioprotection but distinct mechanisms / M. Basalay [et al.] // Exp. Physiol. - 2012. - Vol. 97, N 8. - P. 908-917. https://doi.org/10.1113/expphysiol.2012.064923
5. Vinten-Johansen, J. The science and clinical translation of remote postconditioning / J. Vinten-Johansen, W. J. Shi // J. Cardiovasc. Med. - 2013. - Vol. 14, N 3. - P. 206-213. https://doi.org/10.2459/JCM.0b013e32835cecc6
6. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning / Z. Q. Zhao [et al.] // Am. J. Physiol. Circ. Physiol. - 2003. - Vol. 285, N 2. - P. H579-H588. https://doi.org/10.1152/ajpheart.01064.2002
7. Molecular mechanisms of obesity-linked cardiac dysfunction: an up-date on current knowledge / J. Gutierrez-Cuevas [et al.] // Cells. - 2021. - Vol. 10, N 3. - P. 629. https://doi.org/10.3390/cells10030629
8. Postconditioning fails to reduce the infarct sizes in hearts from rats with metabolic syndrome: role of glycogen synthase kinase 3beta / C. ReuBner [et al.] // J. Mol. Cell. Cardiol. - 2006. - Vol. 40, N 6. - Art. 970. https://doi.org/10.1016/j.yjmcc.2006.03.150
9. Autophagy is involved in the cardioprotection effect of remote limb ischemic postconditioning on myocardial ischemia/ reperfusion injury in normal mice, but not diabetic mice / Z. Han [et al.] // PLoS ONE. - 2014. - Vol. 9, N 1. - P. e86838. https://doi.org/10.1371/journal.pone.0086838
10. Hyperlipidaemia and cardioprotection: Animal models for translational studies / I. Andreadou [et al.] // Br. J. Pharmacol. -2020. - Vol. 177, N 23. - P. 5287-5311. https://doi.org/10.1111/bph.14931
11. Acute hyperglycemia abolishes cardioprotection by remote ischemic perconditioning / T. Baranyai [et al.] // Cardiovasc. Diabet. - 2015. - Vol. 14. - Art. 151. https://doi.org/10.1186/s12933-015-0313-1
12. Long-term effect of remote ischemic conditioning on infarct size and clinical outcomes in patients with anterior ST-elevation myocardial infarction / D. Verouhis [et al.] // Catheter. Cardiovasc. Interv. - 2021. - Vol. 97, N 3. - P. 386-392. https://doi.org/10.1002/ccd.28760
13. Diabetes mellitus and the metabolic syndrome do not abolish, but might reduce, the cardioprotective effect of ischemic postconditioning / W. Oosterlinck [et al.] // J. Thorac. Cardiovasc. Surg. - 2013. - Vol. 145, N 6. - P. 1595-1602. https://doi.org/10.1016/j.jtcvs.2013.02.016
14. High carbohydrate high fat diet induces the production of connective tissue growth factors, increased blood pressure, and changes in the aortic wall in aged rats / N. Naryzhnaya [et al.] // FASEB J. - 2021. - Vol. 35, N S1. https://doi.org/10.1096/fasebj.2021.35.S1.05125
15. Cardioprotective effect of chronic hypoxia is blunted by concomitant hypercapnia / J. Neckar [et al.] // Physiol. Res. -2003. - Vol. 52, N 2. - P. 171-175.
16. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-201 5: a systematic analysis for the Global Burden of Disease Study 2015 / M. N. Forouzanfar [et al.] // Lancet. - 2016. - Vol. 388, N 10053. - P. 1659-724. https://doi.org/10.1016/S0140-6736(16)31679-8
17. Acute hyperglycaemia enhances oxidative stress and aggravates myocardial ischaemia/reperfusion injury: role of thioredoxin-interacting protein / H. Su [et al.] // J. Cell. Mol. Med. - 2013. - Vol. 17, N 1. - P. 181-191. https://doi.org/10.1111/j.1582-4934.2012.01661.x
18. Long-chain free fatty acids inhibit ischaemic preconditioning of the isolated rat heart / A. Lochner [et al.] // Mol. Cell. Biochem. - 2020. - Vol. 473, N 1-2. - P. 111-132. https://doi.org/10.1007/s11010-020-03812-9
19. Myocardial susceptibility to ischaemia/reperfusion in obesity: a re-evaluation of the effects of age / I. Webster [et al.] // BMC Physiol. - 2017. - Vol. 17, N 1. - Art. 3. https://doi.org/10.1186/s12899-017-0030-y
20. Ischaemic preconditioning does not protect the heart in obese and lean animal models of type 2 diabetes / S. B. Kristiansen [et al.] // Diabetologia. - 2004. - Vol. 47, N 10. - P. 1716-1721. https://doi.org/10.1007/s00125-004-1514-4
21. Zhu, S. G. Type 2 diabetic obese db/db mice are refractory to myocardial ischaemic post-conditioning in vivo: potential role for Hsp20, F1-ATPase 5 and Echs1 / S. G. Zhu, L. Xi, R. C. Kukreja // J. Cell. Mol. Med. - 2012. - Vol. 16, N 4. -P. 950-958. https://doi.org/10.1111/j.1582-4934.2011.01376.x
22. Angiotensin-converting enzyme inhibition and food restriction restore delayed preconditioning in diabetic mice / G. van der Mieren [et al.] // Cardiovasc. Diabetol. - 2013. - Vol. 12, N 1. - P. 36. https://doi.org/10.1186/1475-2840-12-36
23. Hypertrophic adipocyte-derived exosomal mir-802-5p contributes to insulin resistance in cardiac myocytes through targeting HSP60 / Z. Wen [et al.] // Obesity. - 2020. - Vol. 28, N 10. - P. 1932-1940. https://doi.org/10.1002/oby.22932
24. Adipokines: new potential therapeutic target for obesity and metabolic, rheumatic, and cardiovascular diseases / L. Recinella [et al.] // Front Physiol. - 2020. - Vol. 11. - P. 578966. https://doi.org/10.3389/fphys.2020.578966/full
25. Chronic type 2 but not type 1 diabetes impairs myocardial ischaemic tolerance and preconditioning in C57Bl/6 mice / J. S. Russell [et al.] // Exp. Physiol. - 2019. - Vol. 104, N 12. - P. 1868-1880. https://doi.org/10.1113/EP088024
26. Leptin regulates MMP-2, TIMP-1 and collagen synthesis via p38 MAPK in HL-1 murine cardiomyocytes / K. Schram [et al.] // Cell. Mol. Biol. Lett. - 2010. - Vol. 15, N 4. - P. 551-563. https://doi.org/10.2478/s11658-010-0027-z/html
27. Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways / H. Y. Sun [et al.] // Apoptosis. - 2006. - Vol. 11, N 9. - P. 1583-1593. https://doi.org/10.1007/s10495-006-9037-8
28. Leptin and obesity: role and clinical implication / M. Obradovic [et al.] // Front Endocrinol. (Lausanne). - 2021. -Vol. 12. - Art. 585887. https://doi.org/10.3389/fendo.2021.585887
29. High-fat diet-induced obesity leads to resistance to leptin-induced cardiomyocyte contractile response / J. Ren [et al.] // Obesity. - 2008. - Vol. 16, N 11. - P. 2417-2423. https://doi.org/10.1038/oby.2008.38
30. Xu, T. Amelioration of myocardial ischemia/reperfusion injury by leptin pretreatment and ischemic preconditioning in mouse / T.-T. Xu, S.-P. Liu, X.-S. Wang // Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. - 2010. - Vol. 22, N 2. - P. 105-108.