Preview

Proceedings of the National Academy of Sciences of Belarus, Medical series

Advanced search

Silver nanoparticles: an ecological method of synthesis, properties and use against antibiotic resistant microflora

https://doi.org/10.29235/1814-6023-2021-18-3-351-361

Abstract

A quantitative assessment of the antibacterial effect of silver nanoparticles on polyantibiotic-resistant grampositive and gram-negative microorganisms was carried out. Silver nanoparticles were synthesized by the environmentally friendly metal-steam synthesis method. The size and electronic state of nanoparticles were investigated by transmission electron and X-ray photoelectron spectroscopy. The antibacterial properties of nanomaterials were assessed on two clinical pathogenic strains of gram-positive and four strains of gram-negative microorganisms. The typing and assessment of bacterial resistance to antibiotics were carried out on a microbiological analyzer. The antibacterial effect of nanoparticles was quantitatively assessed using the dilution method and the determination of the minimum inhibitory and minimum bactericidal concentrations.
It was found that the studied silver nanoparticles have sizes in the range from 5 to 24 nm with an average diameter of 10.8 nm. It was shown that all clinical strains of microorganisms used in the study are characterized by multiple antibacterial resistance; the percentage of their antibiotic resistance ranges from 12.5 to 93.3 %. It was found that for the studied microorganism, the values of the minimum inhibitory concentration (MIC) are in the range from 7.81 to 31.25 μg/ml, and the minimum bactericidal concentration (MBC) is in the range from 31.25 to 62.50 μg/ml.
The obtained MIC and MBC data can be used to create promising antimicrobial drugs and medical next generation devices.

About the Authors

R. I. Dovnar
Grodno State Medical University
Belarus

Ruslan I. Dovnar – Ph. D. (Med.), Associate Professor

80, Gorky Str., 230009, Grodno 



A. Yu. Vasil’kov
A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
Russian Federation

Alexander Yu. Vasil’kov – Ph. D. (Chem.), Associate Professor, Leading Researcher

28, Vavilov Str., 119991, Moscow 



T. M. Sakalova
Grodno State Medical University
Belarus

Tatsiana M. Sakalova – Ph. D. (Med.), Associate Professor

80, Gorky Str., 230009, Grodno 



A. V. Naumkin
A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
Russian Federation

Alexander V. Naumkin – Ph. D. (Phys. and Math.), Senior Researcher

28, Vavilov Str., 119991, Moscow 



A. V. Budnikov
A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
Russian Federation

Alexander V. Budnikov – Junior Researcher

28, Vavilov Str., 119991, Moscow 



I. S. Dovnar
Grodno State Medical University
Belarus

Igor S. Dovnar – Ph. D. (Med.), Associate Professor

80, Gorky Str., 230009, Grodno 



N. N. Iaskevich
Grodno State Medical University
Belarus

Nikolai N. Iaskevich – D. Sc. (Med.), Professor

80, Gorky Str., 230009, Grodno 



References

1. Global action plan on antimicrobial resistance. Available at: https://apps.who.int/iris/bitstream/handle/10665/193736/9789241509763_eng.pdf?sequence=1 (accessed 28.02.2021).

2. Bhattacharya P. K. Emergence of antibiotic-resistant bacterial strains, methicillin-resistant Staphylococcus aureus, extended spectrum beta lactamases, and multi-drug resistance is a problem similar to global warming. Revista da Sociedade Brasileira de Medicina Tropical, 2014, vol. 47, no. 6, pp. 815–816. https://doi.org/10.1590/0037-8682-0139-2014

3. Holland T. L., Arnold C., Fowler Jr. V. G. Clinical management of Staphylococcus aureus bacteremia: a review. JAMA, 2014, vol. 312, no. 13, pp. 1330‒1341. https://doi.org/10.1001/jama.2014.9743

4. Rerambiah K. L., Ndong J. C., Mbakob Mengue M. P., Medzegue S., Elisee-Ndam M., Mintsa-Ndong A., Siawaya J. F. Antimicrobial profiles of bacterial clinical isolates from the Gabonese National Laboratory of Public Health: data from routine activity. International Journal of Infectious Diseases, 2014, vol. 29, pp. 48–53. https://doi.org/10.1016/j.ijid.2014.01.015

5. Okeke I. N., Klugman K. P., Bhutta Z. A., Duse A. G. Jenkins P., O’Brien T. F., Pablos-Mendez A., Laxminarayan R. Antimicrobial resistance in developing countries. Part II: strategies for containment. Lancet Infectious Diseases, 2005, vol. 5, no. 9, pp. 568–580. https://doi.org/10.1016/s1473-3099(05)70217-6

6. Rai M., Shegokar R. Metal nanoparticles in pharma. Cham, Springer, 2017. 493 p.

7. Deepak F. L. (ed.). Metal nanoparticles and clusters. Advances in synthesis, properties and applications. Cham, Springer, 2018. 426 p.

8. Vasil’kov A. Y., Dovnar R. I., Smotryn S. M., Iaskevich N. N., Naumkin A. V. Plasmon resonance of silver nanoparticles as a method of increasing their antibacterial action. Antibiotics, 2018, vol. 7, no. 3, art. 80. https://doi.org/10.3390/antibiotics7030080

9. Vasil’kov A., Naumkin A., Rubina M., Gromovykh T., Pigaleva M. Hybrid materials based on metal-containing microcrystalline and bacterial cellulose: green synthesis and characterization. 19th International multidisciplinary scientific geoconference SGEM 2019. Sofia, 2019, vol. 19, no. 6.1, pp. 199–206.

10. Olenin A. Yu., Leenson I. A., Lisichkin G. V. Cryochemical co-condensation of metal vapors and organic compounds. Direct synthesis of metal complexes. Amsterdam, 2018, pp. 143–179.

11. Bhaskar S. P., Jagirdar B. R. Digestive ripening: a synthetic method par excellence for core-shell, alloy, and composite nanostructured materials. Journal of Chemical Sciences, 2012, vol. 124, no. 6, pp. 1175–1180. https://doi.org/10.1007/s12039-012-0317-2

12. Bhattacharya C., Jagirdar B. R. Monodisperse colloidal metal nanoparticles to core-shell structures and alloy nanosystems via digestive ripening in conjunction with solvated metal atom dispersion: a mechanistic study. Journal of Physical Chemistry C, 2018, vol. 122, no. 19, pp. 10559–10574. https://doi.org/10.1021/acs.jpcc.8b00874

13. Cárdenas-Triviño G., Cruzat-Contreras C. Study of aggregation of gold nanoparticles in chitosan. Journal of Cluster Science, 2018, vol. 29, no. 6, pp. 1081–1088. https://doi.org/10.1007/s10876-018-1419-x

14. Rubina M. S., Said-Galiev E. E., Naumkin A. V., Shulenina A. V., Belyakova O. A., Vasil’kov A. Yu. Preparation and characterization of biomedical collagen–chitosan scaffolds with entrapped ibuprofen and silver nanoparticles. Polymer Engineering and Science, 2019, vol. 59, no. 12, pp. 2479–2487. https://doi.org/10.1002/pen.25122

15. Krasnov A. P., Said-Galiev E. E., Vasil’kov A. Yu., Nikolaev A. Yu., Podshibikhin V. L., Afonicheva O. V., Mit’ V. A., Khokhlov A. R., Gavryushenko N. S., Bulgakov V. G., Mironov S. P. Method for making polymer sliding friction components for artificial endoprostheses. Patent RF, no. 2354668, 2009 (in Russian).

16. Nikitin L. N., Vasil’kov A. Y., Banchero M., Manna L., Naumkin A. V., Podshibikhin V. L., Abramchuk S. S., Buzin M. I., Korlyukov A. A., Khokhlov A. R. Composite materials for medical purposes based on polyvinylpyrrolidone modified with ketoprofen and silver nanoparticles. Journal of Physical Chemistry, 2011, vol. 85, no. 7, pp. 1190–1195 (in Russian). https://doi.org/10.1134/S0036024411070223

17. Rubina M. S., Kamitov E. E., Zubavichus Ya. V., Peters G. S., Naumkin A. V., Suzer S., Vasil’kov A. Yu. Collagenchitosan scaffold modified with Au and Ag nanoparticles: synthesis and structure. Applied Surface Science, 2016, vol. 366, pp. 365–371. https://doi.org/10.1016/j.apsusc.2016.01.107

18. Vasil’kov A., Rubina M., Naumkin A., Buzin M., Dorovatovskii P., Peters G., Zubavichus Y. Cellulose-based hydrogels and aerogels embedded with silver nanoparticles: preparation and characterization. Gels, 2021, vol. 7, рр. 82–99. https://doi.org/10.3390/gels7030082

19. Vasil’kov A., Budnikov A., Naumkin A. Gold-containing polytetrafluoroethylene modified by ketoprofen: synthesis and spectroscopic characterization. 19th International multidisciplinary scientific geoconference SGEM 2019. Sofia, 2019, vol. 19, no. 6.3, pp. 9–16.

20. Naumkin A. V., Kraut-Vass A., Gaarenstroom S. W., Powell C. J. NIST X-ray Photoelectron Spectroscopy Database. Available at: https://doi.org/10.18434/T4T88K (accessed 28.02.2021).

21. Wei L., Lu J., Xu H., Patel A., Chen Z.-S., Chen G. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discovery Today, 2015, vol. 20, no. 5, pp. 595–601. https://doi.org/10.1016/j.drudis.2014.11.014

22. Sondi I., Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gramnegative bacteria. Journal of Colloid and Interface Science, 2004, vol. 275, no. 1, pp. 177–182. https://doi.org/10.1016/j.jcis.2004.02.012

23. Pal S., Tak Y. K., Song J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 2007, vol. 73, no. 6, pp. 1712–1720. https://doi.org/10.1128/aem.02218-06

24. Ahmad T., Wani I. A., Manzoor N., Ahmed J., Asiri A. M. Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 2013, vol. 107, pp. 227–234. https://doi.org/10.1016/j.colsurfb.2013.02.004


Review

For citations:


Dovnar R.I., Vasil’kov A.Yu., Sakalova T.M., Naumkin A.V., Budnikov A.V., Dovnar I.S., Iaskevich N.N. Silver nanoparticles: an ecological method of synthesis, properties and use against antibiotic resistant microflora. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2021;18(3):351-361. (In Russ.) https://doi.org/10.29235/1814-6023-2021-18-3-351-361

Views: 779


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)