Experimental model for assessing the readiness of the wound surface to accept skin grafts
https://doi.org/10.29235/1814-6023-2021-18-3-340-350
Abstract
The aim of the study, performed on 65 Wistar rats, was to develop a new model and, as an example, use it to identify the extent to which quercetin and the quercetin-2-hydroxypropyl-β-cyclodextrin nanocomplex, applied to the wound, affect the engraftment of skin autografts. Grafts were obtained from the ear shells of animals, and graft’s survival rate was assessed by the degree of inhibition of wound contraction. It is shown that the latter depends on the area of grafts and the time after which they were located on the wound surface after its creation. It was shown that quercetin worsens, and quercetin-2- hydroxypropyl-β-cyclodextrin does not impair the ability of the wound surface to accept the graft.
Keywords
About the Authors
A. A. BakunovichBelarus
Aliaksei A. Bakunovich – Junior Researcher
50, BLK, 230030, Grodno
Ju. V. Yarashenka
Belarus
Juliya V. Yarashenka – Junior Researcher
50, BLK, 230030, Grodno
E. F. Raduta
Belarus
Elena F. Raduta – Senior Researcher
50, BLK, 230030, Grodno
E. V. Kononov
Belarus
Evgeny V. Kononov – Assistant
80, Gorky Str., 230009, Grodno
V. U. Buko
Belarus
Vyacheslav U. Buko – D. Sc. (Biol.), Professor, Head of the Department
50, BLK, 230030, Grodno
A. A. Astrowski
Belarus
Alexander A. Astrowski – D. Sc. (Med.), Professor, Leading Researcher
50, BLK, 230030, Grodno
References
1. Falanga V. Classifications for wound bed preparation and stimulation of chronic wounds. Wound Repair and Regeneration, 2000, vol. 8, no. 5, pp. 347–352. https://doi.org/10.1111/j.1524-475X.2000.00347.x
2. Zoltan Y. A. Skin grafting: translated from Hungarian. Budapesht, Hungarian Academy of Sciences, 1984. 304 p. (in Russian).
3. Maksimenya G. G. Clinico-pharmacological characteristics of drugs for wound treatment. Voennaya meditsina [Military medicine], 2014, no. 2, pp. 105–114 (in Russian).
4. McCaughan D., Sheard L., Cullum N., Dumville J., Chetter I. Nurses’ and surgeons’ views and experiences of surgical wounds healing by secondary intention: A qualitative study. Journal of Clinical Nursing, 2020, vol. 29, no. 13–14, pp. 2557– 2571. https://doi.org/10.1111/jocn.15279
5. Lipatov K. V., Komarova K. V. Significance of split skin autotransplantation in purulent surgery. Transplantologiya [Transplantology], 2012, vol. 1, no. 1, pp. 5–9 (in Russian).
6. Approval of the clinical protocol for the treatment of deep skin burns by transplantation. Available at: http://bii.by/tx.dll?d=226257/ (accessed 22.07.2020) (in Russian).
7. Ambika A. P., Nair S. N. Wound healing activity of plants from the Convolvulaceae family. Advances in wound care. Advances in Wound Care, 2019, vol. 1, no. 1, pp. 28‒37. https://doi.org/10.1089/wound.2017.0781
8. Beken B., Serttaş R., Yazicioglu M., Türkekul K., Erdogan S. Quercetin improves inflammation, oxidative stress, and impaired wound healing in atopic dermatitis model of human keratinocytes. Advances in Wound Care, 2020, vol. 33, no. 2, pp. 69‒79. https://doi.org/10.1089/ped.2019.1137
9. Doersch K. M., Newell-Rogers M. K. The impact of Quercetin on wound healing relates to changes in αV and β1 integrin expression. Experimental Biology and Medicine, 2017, vol. 242, no. 14, pp. 1424–1431. https://doi.org/10.1177/1535370217712961
10. Nayak S. B., Isik K., Marshall J. R. Wound-healing potential of oil of Hypercium perforatum in excision wounds of male sprague dawley rats. Advances in Wound Care, 2017, vol. 6, no. 12, pp. 401–406. https://doi.org/10.1089/wound.2017.0746
11. Pereira R. F., Bártolo P. J. Traditional therapies for skin wound healing. Advances in Wound Care, 2016, vol. 5, no. 5, pp. 208–229. https://doi.org/10.1089/wound.2013.0506
12. Bakunovich A. A., Ostrovskii A. A., Moroz V. L., Buko V. U. Wound-healing and immunomodulatory properties of the quercetin nanocomplex with hydroxypropyl-β-cyclodextrin. Kislorod i svobodnye radikaly: sbornik materialov Mezhdunarodnoi nauchno-prakticheskoi konferentsii (Grodno, 15‒16 maya 2018 goda) [Oxygen and free radicals: collection of materials of the International scientific and practical conference (Grodno, May 15‒16, 2018)]. Grodno, 2018, pp. 10–12 (in Russian).
13. Bakunovich A. A., Ostrovskii A. A., Shlyakhtun A. G., Moroz V. L., Ostrovskaya O. B., Melamed V. D., Buko V. U. Effect of quercetin and its combination with cyclodextrin on the healing of burn wounds in laboratory rats. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seriya meditsinskikh navuk = Proceedings of the National Academy of Sciences of Belarus. Medical series, 2019, vol. 16, no. 4, pp. 410‒423 (in Belarusian).
14. Kaur H., Kaur G. A critical appraisal of solubility enhancement techniques of polyphenols. Journal of Pharmaceutics, 2014, vol. 2014, pp. 1–14. https://doi.org/10.1155/2014/180845
15. Evteev A. A., Tyurnikov Yu. I. Failures of autodermoplasty. Moscow, Limited Liability Company “RA ILF”, 2011. 160 p. (in Russian).
16. Halim A. S., Khoo T. L., Mohd Yussof S. J. Biologic and synthetic skin substitutes: an overview. Indian Journal of Plastic Surgery, 2010, no. 43, pp. 23–28. https://doi.org/10.4103/0970-0358.70712
17. Ostrovskii A. A., Shatrova V. O. Development of the interfollicular epidermis on the surface of the collagen framework of the dermis in the experiment. Byulleten’ eksperimental’noi biologii i meditsiny [Bulletin of experimental biology and medicine], 1992, no. 5, pp. 542–545 (in Russian).
18. Ostrovskii A. A., Leve O. I., Shatrova V. O. Development of rat interfollicular epidermis after autotransplantation. Morfologiya [Morphology], 1992, no. 6, pp. 105–112 (in Russian).
19. Malinovskaya I. S., Sinichev D. N., Semichev E. V., Baitinger V. F., Malinovskii S. V., Selyaninov K. V., Baranova E. N., Logvinov S. V. The condition of the vascular bed in a free revascularized inguinal graft under the influence of various forms of silt sulfide mud extract in the experiment. Sibirskii meditsinskii zhurnal [Siberian medical journal], 2008, no. 4-2, pp. 46–50 (in Russian).
20. Chan R. K., Rose L. F., Wu J. C., Tucker D. I., Chan M. M., Christy R. J., Hale R. G., Leung K. P. Autologous graft thickness affects scar contraction and quality in a porcine excisional wound model. Plastic and Reconstructive Surgery – Global Open, 2015, vol. 3, no. 7, p. e468. https://doi.org/10.1097/gox.0000000000000426
21. Barker C. F., Billingham R. E. The lymphatic status of hamster cheek pouch tissue in relation to its properties as a graft and as a graft site. Journal of Experimental Medicine, 1971, vol. 133, no. 3, pp. 620–639. https://doi.org/10.1084/jem.133.3.620
22. Billingham R. F., Medawar P. B. The technique of free skin grafting in mammals. Journal of Experimental Biology, 1951, vol. 28, no. 3, pp. 385–402. https://doi.org/10.1242/jeb.28.3.385
23. Billingham R. F., Medawar P. B. The freezing, drying, and storage of mammalian. Journal of Experimental Biology, 1952, vol. 29, no. 3, pp. 454–468. https://doi.org/10.1242/jeb.29.3.454
24. Coley S. M., Ford M. L., Hanna S. C., Wagener M. E., Kirk A. D., Larsen C. P. IFN- dictates allograft fate via opposing effects on the graft and on recipient CD8 T cell responses. Journal of Immunology, 2008, vol. 182, no. 1, pp. 225–233. https://doi.org/10.4049/jimmunol.182.1.225
25. Gilson C. R., Milas Z., Gangappa S., Hollenbaugh D., Pearson T. C., Ford M. L., Larsen C. P. Anti-CD40 monoclonal antibody synergizes with CTLA4-Ig in promoting long-term graft survival in murine models of transplantation. Journal of Immunology, 2009, vol. 183, no. 3, pp. 1625–1635. https://doi.org/10.4049/jimmunol.0900339
26. Matsumoto K., Leggatt G., Zhong J., Liu X., Kluyver R., Peters T., Fernando G., Liem A., Lambert P., Frazer I. Impaired antigen presentation and effectiveness of combined active/passive immunotherapy for epithelial tumors. Journal of the National Cancer Institute, 2004, vol. 96, no. 21, pp. 1611–1619. https://doi.org/10.1093/jnci/djh301
27. Mattarollo S. R., Yong M., Tan L., Frazer I. H., Leggatt G. R. Secretion of IFN- but not IL-17 by CD1d-restricted NKT cells enhances rejection of skin grafts expressing epithelial cell-derived antigen. Journal of Immunology, 2010, vol. 184, no. 10, pp. 5663–5669. https://doi.org/10.4049/jimmunol.0903730
28. Pakyari M., Farokhi A., Khosravi-Maharlooei M., Kilani R. T., Ghahary A., Brown E. A new method for skin grafting in murine model. Wound Repair and Regeneration, 2016, vol. 24, no. 4, pp. 695–704. https://doi.org/10.1111/wrr.12445
29. Morrell C. N., Murata K., Swaim A. M., Mason E., Martin T. V., Thompson L. E., Ballard M., Fox-Talbot K., Wasowska B., Baldwin W. M. 3rd. In vivo platelet-endothelial cell interactions in response to major histocompatibility complex alloantibody. Circulation Research, 2008, vol. 102, no. 7, pp. 777–785. https://doi.org/10.1161/circresaha.107.170332
30. Swaim A. F., Field D. J., Fox-Talbot K., Baldwin W. M. 3rd, Morrell C. N. Platelets contribute to allograft rejection through glutamate receptor signaling. Journal of Immunology, 2010, vol. 185, no. 11, pp. 6999–7006. https://doi.org/10.4049/jimmunol.1000929
31. Savic I. M., Nikolic V. D., Savic-Gajic I., Nikolic L. B., Radovanovic B. C., Mladenovic J. D. Investigation of properties and structural characterization of the quercetin inclusion complex with (2-hydroxypropyl)-β-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, vol. 82, no. 3–4, pp. 383–394. https://doi.org/10.1007/s10847-015-0500-4
Review
For citations:
Bakunovich A.A., Yarashenka J.V., Raduta E.F., Kononov E.V., Buko V.U., Astrowski A.A. Experimental model for assessing the readiness of the wound surface to accept skin grafts. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2021;18(3):340-350. (In Bel.) https://doi.org/10.29235/1814-6023-2021-18-3-340-350