Energy metabolism and redox status of the glutathione system in experimental brain ischemia and its correction by metabolic neuroprotectors
https://doi.org/10.29235/1814-6023-2021-18-3-274-283
Abstract
The changes in the parameters of oxidative stress, energy metabolism, and redox potential of the glutathione system in the rat brain following cerebral ischemia were studied. To correct metabolic disorders, the pantothenic acid derivatives were used in combination with precursors of glutathione biosynthesis and selenium substances.
Cerebral ischemia was modeled by ligating the both common carotid arteries in rats for 2 h. Drugs were administered i.p. in the following doses: panthenol – 400 mg/kg, N-acetylcysteine – 150, nanoselen – 1 mg/kg, three times: 1 h before ligation of the carotid arteries, at the time of ligation and 1 hour after ligation. We showed that the development of oxidative stress caused by ischemia is accompanied by the changes in the parameters of energy metabolism and the pentose phosphate pathway in the cerebral hemispheres. Simultaneously, there are a decrease in the GSH level, an increase in the GSSG content, a decrease in the GSH/GSSG ratio, and the activation of enzymes of redox transformations of glutathione.
The redox potential of the glutathione system decreases and shifts towards oxidation, while the level of S-glutathionylated proteins increases. Thus, the value of the GSH/GSSG ratio and the protein glutathionylation intensity are the sensitive indicators of the redox potential in the brain tissue and can be used as markers of the extent of changes in the redox balance. The panthenol injection to animals leads to a decrease in the content of free radical oxidation products, violations of oxidative phosphorylation and restoration of thiol-disulfide balance in the brain. When panthenol is administered together with N-acetylcysteine and nanoselen, the corrective effect of panthenol is enhanced.
Keywords
About the Authors
O. V. TitkoBelarus
Oksana V. Titko – Researcher
50, Leninski Komsomol Boulevard, 230030, Grodno
E. P. Lukiyenko
Belarus
Elena P. Lukiyenko – Ph. D. (Med.), Head of the Laboratory
50, Leninski Komsomol Boulevard, 230030, Grodno
E. F. Raduta
Belarus
Elena F. Raduta – Scientific Secretary
50, Leninski Komsomol Boulevard, 230030, Grodno
D. S. Semenovich
Belarus
Dmitry S. Semenovich – Ph. D. (Biol.), Deputy Director for Science
50, Leninski Komsomol Boulevard, 230030, Grodno
A. A. Vasilevich
Belarus
Anna A. Vasilevich – Student
22, Ozheshko Str., 230023, Grodno
A. I. Poleshuk
Belarus
Anna I. Poleshuk – Student
22, Ozheshko Str., 230023, Grodno
А. G. Moiseenok
Belarus
Andrey G. Moiseenok – Corresponding Member, D. Sc. (Biol.), Professor, Chief Researcher
50, Leninski Komsomol Boulevard, 230030, Grodno
N. P. Kanunnikova
Belarus
Nina P. Kanunnikova – D. Sc. (Biol.), Professor
22, Ozheshko Str., 230023, Grodno
References
1. Minnerup J., Sutherland B. A., Buchan A. M., Kleinschnitz C. Neuroprotection for stroke: current status and future perspectives. International Journal of Molecular Sciences, 2012, vol. 13, no. 12, pp. 11753–11772. https://doi.org/10.3390/ijms130911753
2. Lyden P., Wahlgren N. G. Mechanisms of action of neuroprotectants in stroke. Journal of Stroke and Cerebrovascular Diseases, 2000, vol. 9, no. 6, pp. 9–14. https://doi.org/10.1053/jscd.2000.19316
3. Ginsberg M. D. Neuroprotection for ischemic stroke: Past, present and future. Neuropharmacology, 2008, vol. 55, no. 3, pp. 363–389. https://doi.org/10.1016/j.neuropharm.2007.12.007
4. Gitler A. D., Dhillon P., Shorter J. Neurodegenerative disease: models, mechanisms, and a new hope. Disease Models and Mechanisms, 2017, vol. 10, no. 5, pp. 499–502. https://doi.org/10.1242/dmm.030205
5. Liu Z., Zhou T., Ziegler A. C., Dimitrion P., Zuo L. Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxidative Medicine and Cellular Longevity, 2017, vol. 2017, art. ID 2525967. https://doi.org/10.1155/2017/2525967
6. Rahal A., Kumar A., Singh V., Yadav B., Tiwari R., Chakraborty S., Dhama K. Oxidative stress, prooxidants, and antioxidants: The interplay. BioMed Research International, 2014, vol. 2014, art. ID 761264. https://doi.org/10.1155/2014/761264
7. Bacigaluppi M., Hermann D. M. Nеw targets of neuroprotection in ischemic stroke. Scientific World Journal, 2008, vol. 8, art. ID 974246. https://doi.org/10.1100/tsw.2008.94
8. McBean G. J., Aslan M., Griffiths H. R., Torrão R. C. Thiol redox homeostasis in neurodegenerative disease. Redox Biology, 2015, vol. 5, pp. 186–194. https://doi.org/10.1016/j.redox.2015.04.004
9. Shimohama S., Tanino H., Kawakami N., Okamura N., Kodama H., Yamaguchi T. [et al.]. Activation of NADPH oxidase in Alzheimer’s disease brains. Biochemical and Biophysical Research Communications, 2000, vol. 273, no. 1, pp. 5–9. https://doi.org/10.1006/bbrc.2000.2897
10. Ben-Yoseph O., Boxer P. A., Ross B. D. Assessment of the role of the glutathione and pentose phosphate pathways in the protection of primary cerebrocortical cultures from oxidative stress. Journal of Neurochemistry, 1996, vol. 66, no. 6, pp. 2329–2337. https://doi.org/10.1046/j.1471-4159.1996.66062329.x
11. Paik S. R., Lee D., Cho H.-J., Lee E.-N., Chang Ch.-S. Oxidized glutathione stimulated the amyloid formation of α-synuclein. FEBS Letters, 2003, vol. 537, no. 1–3, pp. 63–67. https://doi.org/10.1016/s0014-5793(03)00081-4
12. Penionzhkevich D. Yu., Gorbunov F. E. New technologies of neurometabolic therapy of cerebrovascular diseases. Zhurnal nevrologii i psikhiatrii imeni C. C. Korsakova = Journal of neurology and psychiatry named after S. S. Korsakov, 2009, vol. 109, no. 7, pp. 19–22 (in Russian).
13. Tymianski M. Can molecular and cellular neuroprotection be translated into therapies for patients? Yes, but not the way we tried it before. Stroke, 2010, vol. 41, no. 10, suppl. 1, pp. S87–S90. https://doi.org/10.1161/strokeaha.110.595496
14. Couto N., Wood J., Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radical Biology and Medicine, 2016, vol. 95, pp. 27–42. https://doi.org/10.1016/j.freeradbiomed.2016.02.028
15. Moiseenok A. G., Komar V. I., Khomich T. I., Kanunnikova N. P., Slyshenkov V. S. Pantothenic acid in maintaining thiol and immune homeostasis. BioFactors, 2000, vol. 11, pp. 53–55. https://doi.org/10.1002/biof.5520110115
16. Onufriev M. V., Stepanichev M. Y., Lazareva N. V., Katkovskaya I. N., Tishkina A. O., Moiseenok A. G., Gulyaeva N. V. Panthenol as neuroprotectant: study in a rat model of middle cerebral artery occlusion. Journal of Neurochemistry, 2010, vol. 4, no. 2, pp. 148–152. https://doi.org/10.1134/s181971241002011x
17. Kovler M. A., Karaev A. L., Pomerantseva T. Ya., Kozlova G. S., Mikhailova G. S., Gunar V. I., Dorofeev B. F., Moiseenok A. G. Results of an experimental and clinical study of the domestic drug panthevitol (panthenol). Pantenol i drugie proizvodnye pantotenovoi kisloty: materialy Mezhdunarodnogo simpoziuma (Grodno, 3–5 iyunya 1998 goda) [Panthenol and other derivatives of pantothenic acid: materials of the International symposium (Grodno, June 3–5, 1998)]. Grodno, 1998, pp. 99–106 (in Russian).
18. Oleshkevich F. V., Skorokhod A. A., Moiseenok A. G. Neuroprotective effect of pantothenic acid derivatives in surgical treatment of arterial aneurysms of the brain. Zhurnal teoreticheskoi i klinicheskoi meditsiny [Journal of theoretical and clinical medicine], 2000, no. 3, pp. 232–233 (in Russian).
19. Yamagata K., Ichinose S., Miyashita A., Tagami M. Protective effect of ebselen, a seleno-organic antioxidant on neurodegeneration induced by hypoxia and reperfusion in stroke-prone spontaneously hypertensive rat. Neuroscience, 2008, vol. 153, no. 2, pp. 428–435. https://doi.org/10.1016/j.neuroscience.2008.02.028
20. Parnham M., Sies H. Ebselen: prospective therapy for cerebral ischaemia. Expert Opinion on Investigational Drugs, 2000, vol. 9, no. 3, pp. 607–619. https://doi.org/10.1517/13543784.9.3.607
21. Lejay A., Paradis S., Lambert A., Charles A.-L., Talha S., Enache I., Thaveau F., Chakfe N., Geny B. N-acetyl cysteine restores limb function, improves mitochondrial respiration, and reduces oxidative stress in a murine model of critical limb ischaemia. European Journal of Vascular and Endovascular Surgery, 2018, vol. 56, no. 5, pp. 730–738. https://doi.org/10.1016/j.ejvs.2018.07.025
22. Lobanova N. N., Medvedev N. I., Popov V. I., Murashev A. N. Modeling global cerebral ischemia by bilateral carotid artery occlusion in awake hypertensive rats (SHR-SP). Byulleten’ eksperimental’noi biologii i meditsiny [Bulletin of experimental biology and medicine], 2008, vol. 146, no. 12, pp. 627–630 (in Russian).
23. Verde V., Fogliano V., Ritieni A., Maiani G., Morisco F., Caporaso N. Use of N,N-dimethyl-p-phenylenediamine to evaluate the oxidative status of human plasma. Free Radical Research, 2002, vol. 36, no. 8, pp. 869–873. https://doi.org/10.1080/1071576021000005302
24. Williamson K. S., Hensley K., Floyd R. A. Fluorometric and colorimetric assessment of thiobarbituric acid-reactive lipid aldehydes in biological matrices. Methods in Biological Oxidative Stress. New York, 2003, pp. 57–65.
25. Hermes-Lima M., Willmore W. G., Storey K. B. Quantification of lipid peroxidation in tissue extracts based on Fe(III) xylenol orange complex formation. Free Radical Biology and Medicine, 1995, vol. 19, no. 3, pp. 271–280. https://doi.org/10.1016/0891-5849(95)00020-x
26. Arutyunyan A. V., Dubinina E. E., Zybina N. N. Methods for assessing free radical oxidation and antioxidant system of the body. St. Petersburg, St. Petersburg Institute of Bioregulation and Gerontology, 2000. 102 p. (in Russian).
27. Ninfali P., Aluigi G., Pompella A. Methods for studying the glucose-6-phosphate dehydrogenase activity in brain areas. Brain Reserch Protocols, 1997, vol. 1, no. 4, pp. 357–363. https://doi.org/10.1016/s1385-299x(97)00011-1
28. Quirós P. M. Determination of aconitase activity: a substrate of the mitochondrial ion protease. Methods in Molecular Biology. New York, 2018, vol. 1731, pp. 49–56. https://doi.org/10.1007/978-1-4939-7595-2_5
29. Eshchenko N. D., Vol’skii G. G. Determination of the amount of succinic acid and the activity of succinate dehydrogenase. Biochemical research methods (lipid and energy metabolism). Leningrad, 1982, pp. 207–212 (in Russian).
30. Bisswanger H. Practical Enzymology. 2nd ed. Weinheim, Wiley-VCH Verlag GmbH and Co., 2013. 376 p.
31. Anderson M. Determination of glutathione and glutathione disulfide in biological samples. Methods in Enzymology. Glutamate, Glutamine, Glutathione, and Related Compounds. Vol. 113. Orlando, 1985, pp. 548–555.
32. Rahman I., Kode A., Biswas S. K. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nature Protocols, 2006, vol. 1, no. 6, pp. 3159–3165. https://doi.org/10.1038/nprot.2006.378
33. Smith I. K., Vierheller T. L., Thorne C. A. Assay of glutathione reductase in crude tissue homogenates using 5,5ˊ-dithiobis(2-nitrobenzoic acid). Analytical Biochemistry, 1988, vol. 175, no. 2, pp. 408–413. https://doi.org/10.1016/0003-2697(88)90564-7
34. Flohé L., Günzler W. A. Assays of glutathione peroxidase. Methods in Enzymology. Oxygen Radicals in Biological Systems. Vol. 105. Orlando, 1984, pp. 114–121.
35. Menon D., Board P. G. A fluorometric method to quantify protein glutathionylation using glutathione derivatization with 2,3-naphthalenedicarboxaldehyde. Analytical Biochemistry, 2013, vol. 433, no. 2, pp. 132–136. https://doi.org/10.1016/j.ab.2012.10.009
Review
For citations:
Titko O.V., Lukiyenko E.P., Raduta E.F., Semenovich D.S., Vasilevich A.A., Poleshuk A.I., Moiseenok А.G., Kanunnikova N.P. Energy metabolism and redox status of the glutathione system in experimental brain ischemia and its correction by metabolic neuroprotectors. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2021;18(3):274-283. (In Russ.) https://doi.org/10.29235/1814-6023-2021-18-3-274-283