Study of the effect of some drugs used in the clinic on the AQP1 activity of the human erythrocyte membrane
https://doi.org/10.29235/1814-6023-2021-18-2-204-211
Abstract
Using the stopped flow method and based on the study of the intensity of light scattering, the effect of pharmacological preparations used in the clinic on the water exchange of human erythrocytes, catalyzed by aquaporin AQP1, was studied. Pharmacological preparations used in therapeutic concentrations have a variable inhibitory effect on water permeability of the erythrocyte membrane. The obtained results broaden our understanding of the molecular action mechanism of the investigated drugs. In view of the wide distribution of AQP1 in various human tissues, these data should be taken into account when carrying out therapeutic measures aimed at normalizing the water exchange of organs and tissues.
About the Authors
K. V. BasiakovaBelarus
Katerina V. Basiakova – Researcher
24, F. Skorina Str., 220114, Minsk
E. P. Titovets
Belarus
Ernst P. Titovets – D. Sc. (Biol.), Professor, Chief Researcher
24, F. Skorina Str., 220114, Minsk
References
1. Takata K., Matsuzaki T., Tajika Y. Aquaporins: water channel proteins of the cell membrane. Progress in Histochemistry and Cytochemistry, 2004, vol. 39, no. 1, pp. 1–83. https://doi.org/10.1016/j.proghi.2004.03.001
2. Titovets E. Novel computational model of the brain water metabolism: introducing an interdisciplinary approach. Journal of Computational Systems Biology, 2018, vol. 2, no. 1, art. 103.
3. Titovets E. Nanofluidic approach to brain water metabolism. Advances in Nanomedicine and Nanotechnology Research, 2019, vol. 1, pp. 49–56.
4. Lei Y., Han H., Yuan F., Javeed A., Zhao Y. The brain interstitial system: anatomy, modeling, in vivo measurement, and applications. Progress in Neurobiology, 2017, vol. 157, pp. 230–246. https://doi.org/10.1016/j.pneurobio.2015.12.007
5. Simon M. J., Iliff J. J. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 2016, vol. 1862, no. 3, pp. 442–451. https://doi.org/10.1016/j.bbadis.2015.10.014
6. Hasegawa H., Lian S. C., Finkbeiner W. E., Verkman A. S. Extrarenal tissue distribution of CHIP28 water channels by in situ hybridization and antibody staining. American Journal of Physiology – Cell Physiology, 1994, vol. 266, no. 4, pp. C893–C903. https://doi.org/10.1152/ajpcell.1994.266.4.c893
7. Titovets E. P. Aquaporins of man and animals: fundamental and clinical aspects. Minsk, Belorusskaya Nauka Publ., 2007. 239 p. (in Russian).
8. Yool A. J. Aquaporins: multiple roles in the central nervous system. Neuroscientist, 2007, vol. 13, no. 5, pp. 470–485. https://doi.org/10.1177/1073858407303081
9. Yang B., Ma T., Verkman A. S. Erythrocyte water permeability and renal function in double knockout mice lacking aquaporin-1 and aquaporin-3. Journal of Biological Chemistry, 2001, vol. 276, no. 1, pp. 624–628. https://doi.org/10.1074/jbc. m008664200
10. Denker B. M., Smith B. L., Kuhajda F. P., Agre P. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. Journal of Biological Chemistry, 1988, vol. 263, no. 30, pp. 15634–15642. https://doi.org/10.1016/s0021-9258(19)37635-5
11. Higaa K., Ochiai H., Fujise H. Molecular cloning and expression of aquapolin 1 (AQP1) in dog kidney and erythroblasts. Biochimica et Biophysica Acta (BBA) – Biomembranes, 2000, vol. 1463, no. 2, pp. 374–382. https://doi.org/10.1016/s0005-2736(99)00218-7
12. Wintour E. M. Water channels and urea transporters. Clinical and Experimental Pharmacology and Physiology, 1997, vol. 24, no. 1, pp. 1–9. https://doi.org/10.1111/j.1440-1681.1997.tb01775.x
13. Abbott N. J., Rönnbäck L., Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews Neuroscience, 2006, vol. 7, no. 1, pp. 41–53. https://doi.org/10.1038/nrn1824
14. Titovets E. P., Smeyanovich A. F. Cerebral edema and the latest trends in the therapy. Vestsі Natsyyanal’nai akademіі navuk Belarusі. Seryya medytsynskіkh navuk = Proceedings of the National Academy of Sciences of Belarus. Medical series, 2011, no. 1, pp. 84–94 (in Russian).
15. Steiner E., Enzmann G. U., Lin S., Ghavampour S., Hannocks M.-J., Zuber B., Rüegg M. A., Sorokin L., Engelhardt B. Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation. Glia, 2012, vol. 60, no. 11, pp. 1646–1669. https://doi.org/10.1002/glia.22383
16. Titovets E. Р., Parkhach L. P. Novel computational model of the brain water metabolism: introducing an interdisciplinary approach. Molekulyarnye, membrannye i kletochnye osnovy funktsionirovaniya biosistem: Mezhdunarodnaya nauchnaya konferentsiya; Odinnadtsatyi s’’ezd Belorusskogo obshchestvennogo ob’’edineniya fotobiologov i biofizikov (17–20 iyunya 2014 goda, Minsk): sbornik statei. Chast’ 1 [Molecular, membrane and cellular bases of the functioning of biosystems: International scientific conference; Eleventh congress of the Belarusian public association of photobiologists and biophysicists (June 17–20, 2014, Minsk) : collection of articles. Pt. 1]. Мinsk, 2014, pp. 339–341 (in Russian).
17. Soveral G., Casini A. Aquaporin modulators: a patent review (2010–2015). Expert Opinion on Therapeutic Patents, 2017, vol. 27, no. 1, pp. 49–62. https://doi.org/10.1080/13543776.2017.1236085
18. Ducza E., Csányi A., Gáspár R. Aquaporins during pregnancy: their function and significance. International Journal of Molecular Sciences, 2017, vol. 18, no. 12, p. 2593. https://doi.org/10.3390/ijms18122593
19. Zelinski T., Kaita H., Lewis M., Coghlan G., Philipps S., Belcher E., McAlpine P. J., Coopland G., Wong P. The Colton blood group locus. A linkage analysis. Transfusion, 1988, vol. 28, no. 5, pp. 435–438. https://doi.org/10.1046/j.1537-2995.1988.28588337331.x
20. Stoenoiu M. S., Ni J., Verkaeren C., Debaix H., Jonas J.-C., Lameire N., Verbavatz J.-M., Devuyst O. Corticosteroids induce expression of aquaporin-1 and increase transcellular water transport in rat peritoneum. Journal of the American Society of Nephrology, 2003, vol. 14, no. 3, pp. 555–565. https://doi.org/10.1097/01.asn.0000053420.37216.9e
21. Parkhach L. P., Titovets E. Р, Stepanova T. S., Matusevich L. I. Study of the mechanisms of oxygen metabolism of human erythrocytes. Medline.ru. Rossiiskii biomeditsinskii zhurnal [Medline.ru. Russian biomedical journal], 2009, vol. 10, pp. 425–441 (in Russian).
22. Ding X.-D., Zheng N.-N., Cao Y.-Y., Zhao G.-Y., Zhao P. Dexmedetomidine preconditioning attenuates global cerebral ischemic injury following asphyxial cardiac arrest. International Journal of Neuroscience, 2016, vol. 126, no. 3, pp. 249–256. https://doi.org/10.3109/00207454.2015.1005291
23. Küppers E., Gleiser C., Brito V., Wachter B., Pauly T., Hirt B., Grissmer S. AQP4 expression in striatal primary cultures is regulated by dopamine – implications for proliferation of astrocytes. European Journal of Neuroscience, 2008, vol. 28, no. 11, pp. 2173–2182. https://doi.org/10.1111/j.1460-9568.2008.06531.x
24. Yool A. J., Morelle J., Cnops Y., Verbavatz J.-M., Campbell M. E., Beckett E. A., Booker G. W., Flynn G., Devuyst O. AqF026 is a pharmacologic agonist of the water channel aquaporin-1. Journal of the American Society of Nephrology, 2013, vol. 24, no. 7, pp. 1045–1052. https://doi.org/10.1681/asn.2012080869
25. Voigtlaender J., Heindl B., Becker F. B. Transmembrane water influx via aquaporin-1 is inhibited by barbiturates and propofol in red blood cells. Naunyn-Schmiedeberg’s Archives of Pharmacology, 2002, vol. 366, no. 3, pp. 209–217. https://doi.org/10.1007/s00210-002-0580-8
26. Ding Z., Jiaming Z., Jinyu X., Guangjie S., Guorong H. Propofol administration modulates AQP-4 expression and brain edema after traumatic brain injury. Cell Biochemistry and Biophysics, 2013, vol. 67, no. 2, pp. 615–622. https://doi.org/10.1007/s12013-013-9549-0
27. Yue-Ying Z., Yun-Ping L., Hui-Fang T., Sheng-Mei Z. Propofol pretreatment attenuates aquaporin-4 over-expression and alleviates cerebral edema after transient focal brain ischemia reperfusion in rats. Anesthesia and Analgesia, 2008, vol. 107, no. 6, pp. 2009–2016. https://doi.org/10.1213/ane.0b013e318187c313
28. Chang-Ming Lv., Hui-Mei W., Ling W., Guang-Hong X., Zhi-Lai Y., Qi-Ying S. Sevoflurane modulates AQPs (1,5) expression and endoplasmic reticulum stress in mice lung with allergic airway inflammation. Bioscience Reports, 2019, vol. 39, no. 11, art. BSR20192453. https://doi.org/10.1042/bsr20193282
29. Kamondi A., Reiner P. B. Mechanisms of antihistamine-induced sedation in the human brain: H1 receptor activation reduces a background leakage potassium current. Neuroscience, 1994, vol. 59, no. 3, pp. 579–588. https://doi.org/10.1016/0306-4522(94)90178-3
30. Smeyanovich A. F., Titovets E. P., Lukasheiko Yu. N., Parkhach L. P., Shkut D. N., Bulgak V. V. Antioxidant therapy in treating brain peritumor edema. Dostizheniya meditsinskoi nauki Belarusi: retsenziruemyi nauchno-prakticheskii ezhegodnik [Accomplishments of medical science in Belarus: peer-reviewed scientific and practical yearbook]. Мinsk, 2008, iss. 13, pp. 92–93 (in Russian).
31. Aval S. F., Zarghami N., Alizadeh E., Mohammadi S. A. The effect of ketorolac and triamcinolone acetonide on adipogenic and hepatogenic differentiation through miRNAs 16/15/195: Possible clinical application in regenerative medicine. Biomedicine and Pharmacotherapy, 2018, vol. 97, pp. 675–683. https://doi.org/10.1016/j.biopha.2017.10.126
32. Moon C., King L. S., Agre P. Aqp1 expression in erythroleukemia cells: geneticregulation of glucocorticoid and chemical induction. American Journal of Physiology – Cell Physiology, 1997, vol. 273, no. 5, pp. C1562–C1570. https://doi.org/10.1152/ajpcell.1997.273.5.c1562
33. Batista de Almeida A. F. Aquaporins in health and disease. Metallodrugs as protein modulators. Ph.D. Thesis. Groningen, 2016, pp. 59–63.
34. Madeira A., de Almeida A., de Graaf C., Camps M., Zorzano A., Moura T. F., Casini A., Soveral G. Gold coordination compounds as chemical probes to unravel aquaporin-7 function. ChemBioChem, 2014, vol. 15, no. 10, pp. 1487–1494. ttps://doi.org/10.1002/cbic.201402103
35. Endeward V., Musa-Aziz R., Cooper G. J., Chen L.-M., Pelletier M. F., Virkki L. V., Supuran C. T., King L. S., Boron W. F., Gros G. Evidence that aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. FASEB Journal, 2006, vol. 20, no. 12, pp. 1974–1981. https://doi.org/10.1096/fj.04-3300com
36. Boron W. F. Sharpey-Schafer lecture: gas channels. Experimental Physiology, 2010, vol. 95, no. 12, pp. 1107–1130. https://doi.org/10.1113/expphysiol.2010.055244
37. Verkman A. S. Does aquaporin-1 pass gas? An opposing view. Journal of Physiology, 2002, vol. 542, no. 1, p. 31. https://doi.org/10.1113/jphysiol.2002.024398
Review
For citations:
Basiakova K.V., Titovets E.P. Study of the effect of some drugs used in the clinic on the AQP1 activity of the human erythrocyte membrane. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2021;18(2):204-211. (In Russ.) https://doi.org/10.29235/1814-6023-2021-18-2-204-211