Preview

Proceedings of the National Academy of Sciences of Belarus, Medical series

Advanced search

Influence of glucocorticoid hormones on the thyroid gland function

https://doi.org/10.29235/1814-6023-2021-18-1-117-126

Abstract

The injection of exogenous analogues of glucocorticoid hormones (cortisone, hydrocortisone, corticosterone, dexamethasone, betamethasone, etc.) leads to a change in thyroid function at all levels (biosynthesis and secretion of hormones by the thyroid gland, the transport, interaction with receptors in target organs, biological action, their metabolism and excretion). Glucocorticoid hormones change regulationof the thyroid function: transhypophysially (glucocorticoids block the secretion of thyroliberin, thyroid stimulating hormone, corticotropin releasing hormone, somatoliberin and the production of somatotropin under the influence of the last one) and parahypophysially (glucocorticoids stimulate formation of insulin in β-cells of the pancreas).

About the Authors

E. A. Gusakova
Vitebsk State Order of Peoples’ Friendship Medical University
Belarus

Elena A. Gusakova ‒ Ph. D. (Biol.), Associate Professor

27, Frunze Ave., 210017, Vitebsk, Republic of Belarus



I. V. Gorodetskaya
Vitebsk State Order of Peoples’ Friendship Medical University
Belarus

Irina V. Gorodetskaya ‒ D. Sc. (Med.), Professor, Dean

27, Frunze Ave., 210017, Vitebsk, Republic of Belarus



References

1. Kuznetsov E. V., Zhukova L. A., Pakhomova E. A., Gulamov A. A. Endocrine diseases as a medical-social problem of modernity. Sovremennye problem nauki i obrazovaniya [Modern problems of science and education], 2017, no. 4, p. 62 (in Russian).

2. Gorodetskaya I. V., Gusakova E. A. The effect of iodine-containing thyroid hormones on the central part of the stresslimiting system. Vestnik Vitebskogo gosudarstvennogo meditsinskogo universiteta [Bulletin of Vitebsk State Medical University], 2018, vol. 17, no. 3, pp. 7–15 (in Russian).

3. Vinogradov V. V., Golyshko P. V., Tumanov A. V., Andreev V. P., Nadol’nik L. I., Yarotskii Yu. V. The effect of glucocorticoids on the morphology and function of the thyroid gland of rats]. Vestsі Natsyyanal’nai akademіі navuk Belarusi. Seryya biyalagіchnykh navuk= Proceedings of the National Academy of Sciences of Belarus. Biological series, 2010, no. 3, pp. 87–93 (in Russian).

4. Martinho A., Gonçalves I., Costa M., Santos C. R. Stress and glucocorticoids increase transthyretin expression in rat choroid plexus via mineralocorticoid and glucocorticoid receptors. Journal of Molecular Neuroscience, 2012, vol. 48, no. 1, pp. 1–13. https://doi.org/10.1007/s12031-012-9715-7

5. Sviridov O. V., Ermolenko M. N. Interaction of thyroid hormones with immunoglobulins isolated from human blood serum. I. Parameters of complex formation and the nature of the binding reaction. Biokhimiia, 1994, vol. 59, no. 1, pp. 78–87. 6. Franco L. M., Gadkari M., How K. N., Sun J., Kardava L., Kumar P. [et al.]. Immune regulation by glucocorticoids can be linked to cell type-dependent transcriptional responses. Journal of Experimental Medicine, 2019, vol. 216, no. 2. pp. 384–406. https://doi.org/10.1084/jem.20180595

6. Satyanarayana M., Sarvesh A., Khadeer M. A., Ved H. S., Soprano D. R., Rajeswari M. R., Pieringer R. A. Regulation of neuronal thyroid hormone receptor alpha 1 mRNA by hydrocortisone, thyroid hormone and retinoic acid. Developmental Neuroscience, 1994, vol. 16, no. 5–6, pp. 255–259. https://doi.org/10.1159/000112117

7. Montesinos M. M., Pellizas C. G., Vélez M. L., Susperreguy S., Masini-Repiso A. M., Coleoni A. H. Thyroid hormone receptor beta1 gene expression is increased by Dexamethasone at transcriptional level in rat liver. Life Science, 2006, vol. 78, no. 22, pp. 2584–2594. https://doi.org/10.1016/j.lfs.2005.10.019

8. Gil-Ibáñez P., Bernal J., Morte B. Hormone regulation of gene expression in primary cerebrocortical cells: Role of thyroid hormone receptor subtypes and interactions with retinoic acid and glucocorticoids. Public Library of Science One, 2014, vol. 9, no. 3, p. 91692. https://doi.org/10.1371/journal.pone.0091692

9. van der Geyten S., Darras V. M. Developmentally defined regulation of thyroid hormone metabolism by glucocorticoids in the rat. Journal of Endocrinology, 2005, vol. 185, no. 2, pp. 327–336. https://doi.org/10.1677/joe.1.05974

10. Forhead A. J., Jellyman J. K., Gardner D. S., Giussani D. A., Kaptein E., Visser T. J., Fowden A. L. Differential effects of maternal dexamethasone treatment on circulating thyroid hormone concentrations and tissue deiodinase activity in the pregnant ewe and fetus. Endocrinology, 2007, vol. 148, no. 2, pp. 800–805. https://doi.org/10.1210/en.2006-1194

11. Verhoelst C. H., van der Geyten S., Roelens S. A., Darras V. M. Regulation of thyroid hormone availability by iodothyronine deiodinases at the blood-brain barrier in birds. Annals of the New York Academy of Sciences, 2005, vol. 1040, no. 1, pp. 501–503. https://doi.org/10.1196/annals.1327.103

12. Hernandez A., Germain D. L. Dexamethasone inhibits growth factor-induced type 3 deiodinase activity and mRNA expression in a cultured cell line derived from rat neonatal brown fat vascular-stromal cells. Endocrinology, 2002, vol. 143, no. 7, pp. 2652–2658. https://doi.org/10.1210/endo.143.7.8923

13. Kakucska I. Qi., Lechan R. M. Changes in adrenal status affect hypothalamic thyrotropin-releasing hormone gene expression in parallel with corticotropin-releasing hormone. Endocrinology, 1995, vol. 136, no. 7, pp. 2795–2802. https://doi.org/10.1210/endo.136.7.7789304

14. Alkemade A., Unmehopa U. A., Wiersinga W. M., Swaab D. F., Fliers E. Glucocorticoids decrease thyrotropin-releasing hormone messenger ribonucleic acid expression in the paraventricular nucleus of the human hypothalamus. Journal of Clinical Endocrinology and Metabolism, 2005, vol. 90, no. 1, pp. 323–327. https://doi.org/10.1210/jc.2004-1430

15. Luo L. G., Bruhn T., Jackson I. M. Glucocorticoids stimulate thyrotropinreleasing hormone gene expression in cultured hypothalamic neurons. Endocrinology, 1995, vol. 136, no. 11, pp. 4945–4950. https://doi.org/10.1210/endo.136.11.7588228

16. Pérez-Martínez L., Carreón-Rodríguez A., González-Alzati M. E., Morales C., Charli J. L., Joseph-Bravo P. Dexamethasone rapidly regulates TRH mRNA levels in hypothalamic cell cultures: interaction with the cAMP pathway. Neuroendocrinology, 1998, vol. 68, no. 5, pp. 345–354. https://doi.org/10.1159/000054383

17. Benický J., Strbák V. Effects of dexamethasone on pancreatic growth and thyroliberin (TRH) content in neonatal rat pancreas. Physiological Research, 1995, vol. 44, no. 3, pp. 165–172.

18. Manojlovic-Stojanoski M., Nestorović N., Trifunovic S., Šošić-Jurjević B., Milošević V., Sekulić M., Trifunović S., Negić N. Dexamethasone treatment during pregnancy influences the number of TSH cells in rat fetuses. Archives Biological Sciences, 2009, vol. 60, no. 4, pp. 555–560. https://doi.org/10.2298/ABS0804555M

19. Dogansen S. C., Yalin G. Y., Canbaz B., Tanrikulu S., Yarman S. Dynamic changes of central thyroid functions in the management of Cushing’s syndrome. Archives of Endocrinology and Metabolism, 2018, vol. 62, no. 2, pp. 164–171. http://dx.doi.org/10.20945/2359-3997000000019

20. Roelfsema F., Pereira A. M., Biermasz N. R., Frolich M., Keenan D. M., Veldhuis J. D., Romijn J. A. Diminished and irregular TSH secretion with delayed acrophase in patients with Cushing’s syndrome. European Journal of Endocrinology, 2009, vol. 161, no. 5, pp. 695–703. https://doi.org/10.1530/EJE-09-0580

21. Niepomniszcze H., Pitoia F., Katz S. B., Chervin R., Bruno O. D. Primary thyroid disorders in endogenous Cushing’s syndrome. European Journal of Endocrinology, 2002, vol. 147, no. 3, pp. 305–311. https://doi.org/10.1530/eje.0.1470305

22. Murakami T., Wada S., Katayama Y., Nemoto Y., Kugai N., Nagata N. Thyroid dysfunction in isolated adrenocorticotropic hormone (ACTH) deficiency: case report and literature review. Endocrine Journal, 1993, vol. 40, no. 4, pp. 473–478. https://doi.org/10.1507/endocrj.40.473

23. Tsigos C., Chrousos G. P. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research, 2002, vol. 53, no. 4, pp. 865–871. https://doi.org/10.1016/s0022-3999(02)00429-4

24. Giustina A., Wehrenberg W. B. The role of glucocorticoids in the regulation of growth hormone secretion. Mechanisms and clinical significance. Trends in Endocrinology and Metabolism, 1992, vol. 3, no. 8, pp. 306–311. https://doi.org/10.1016/1043-2760(92)90142-N

25. Smyczynska J., Hilczer M., Stawerska R., Lewinski A. Thyroid function in children with growth hormone (GH) deficiency during the initial phase of GH replacement therapy – clinical implications. Thyroid Research, 2010, vol. 3, no. 1, p. 2. https://doi.org/10.1186/1756-6614-3-2

26. Keskin M., Bayramoglu E., Aycan Z. Effects of 1-year growth hormone replacement therapy on thyroid volume and function of the children and adolescents with idiopathic growth hormone deficiency. Journal of Pediatric Endocrinology & Metabolism, 2017, vol. 30, no. 11, pp. 1187–1190. https://doi.org/10.1515/jpem-2017-0210

27. Xue Y., Gao Y., Wang S., Wang P. An examination of the effects of different doses of recombinant human growth hormone on children with growth hormone deficiency. Experimental and Therapeutic Medicine, 2016, no. 11, pp. 1647–1652. https://doi.org/10.3892/etm.2016.3091

28. Witkowska-Sędek E., Borowiec A., Majcher A., Sobol M., Rumińska M., Pyrżak B. Thyroid function in children with growth hormone deficiency during long-term growth hormone replacement therapy. Central-European Journal of Immunology, 2018, vol. 43, no. 3, pp. 255–261. https://doi.org/10.5114/ceji.2018.80043

29. Cummings B. P., Bremer A. A., Kieffer T. J., D’Alessio D., Havel P. J. Investigation of the mechanisms contributing to the compensatory increase in insulin secretion during dexamethasone-induced insulin resistance in rhesus macaques. Journal of Endocrinology, 2013, vol. 216, no. 2, pp. 207–215. https://doi.org/10.1530/JOE-12-0459

30. Florio T., Scorizello A., Fattore M., D’Alto V., Salzano S., Rossi G., Berlingieri M. T., Fusco A., Schettini G. Somatostatin inhibits PC Cl3 thyroid cell proliferation through the modulation of phosphotyrosine phosphatase activity. Journal of Biological Chemistry, 1996, vol. 271, no. 11, pp. 6129–6136. https://doi.org/10.1074/jbc.271.11.6129

31. Taton M., Dumont J. E. Dissociation of the stimuli for cell hypertrophy and cell division in the dog thyrocyte: insulin promotes protein accumulation while TSH triggers DNA synthesis. Experimental Cell Research, 1995, vol. 221, no. 2, pp. 530–533. https://doi.org/10.1006/excr.1995.1405

32. Kimura T., Dumont J. E., Fusco A., Golstein J. Insulin and TSH promote growth in size of PC Cl3 rat thyroid cells, possibly via a pathway different from DNA synthesis: comparison with FRTL-5 cells. European Journal of Endocrinology, 1999, vol. 140, no. 1, pp. 94–103. https://doi.org/10.1530/eje.0.1400094

33. Roelfsema V., Clark R. G. The growth hormone and insulin-like growth factor axis: its manipulation for the benefit of growth disorders in renal failure. Journal of the American Society of Nephrology, 2001, vol. 12, no. 6, pp. 1297–1300.

34. Dumont J. E., Lamy F., Roger P., Maenhaut C. Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors. Physiological Reviews, 1992, vol. 72, no. 3, pp. 667–697. https://doi.org/10.1152/physrev.1992.72.3.667

35. Hisanaga E., Nagasawa M., Ueki K., Kulkarni R. N., Mori M., Kojima I. Regulation of calcium-permeable TRPV2 channel by insulin in pancreatic-cells. Diabetes, 2009, vol. 58, no. 1, pp. 174–184. https://doi.org/10.2337/db08-0862

36. Kanzaki M., Zhang Y. Q., Mashima H., Li L., Shibata H., Kojima I. Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. N ature C ell B iology, 1999, vol. 1, no. 3, pp. 165–170. https://doi.org/10.1038/11086

37. Contreras-Ferrat A., Llanos P., Vásquez C., Espinosa A., Osorio-Fuentealba C., Arias-Calderon M., Lavandero S., Klip A., Hidalgo C., Jaimovich E. Insulin elicits a ROS-activated and an IP3-dependent Ca2+ release, which both impinge on GLUT4 translocation. Journal of Cell Science, 2014, vol. 127, no. 9, pp. 1911–1923. https://doi.org/10.1242/jcs.138982


Review

For citations:


Gusakova E.A., Gorodetskaya I.V. Influence of glucocorticoid hormones on the thyroid gland function. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2021;18(1):117-126. (In Russ.) https://doi.org/10.29235/1814-6023-2021-18-1-117-126

Views: 4863


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)