Preview

Известия Национальной академии наук Беларуси. Серия медицинских наук

Пашыраны пошук

Влияние глюкокортикоидных гормонов на функцию щитовидной железы

https://doi.org/10.29235/1814-6023-2021-18-1-117-126

Анатацыя

На основании проведенного анализа данных литературы установлено, что введение экзогенных аналогов глюкокортикоидных гормонов (кортизона, гидрокортизона, кортикостерона, дексаметазона, бетаметазона и др.) приводит к изменению тиреоидной функции на всех уровнях (биосинтеза и секреции гормонов щитовидной железой, их транспорта, взаимодействия с рецепторами в органах-мишенях, биологического действия, метаболизма и экскреции), а также к влиянию на ее регуляцию как трансгипофизарно (блокирует секрецию тиреолиберина, тиреотропного гормона, кортиколиберина, соматолиберина и продукцию соматотропного гормона под влиянием послед- него), так и парагипофизарно (стимулирует образование инсулина β-инсулоцитами поджелудочной железы).

Аб аўтарах

Е. Гусакова
Витебский государственный ордена Дружбы народов медицинский университет
Беларусь


И. Городецкая
Витебский государственный ордена Дружбы народов медицинский университет
Беларусь


Спіс літаратуры

1. Эндокринные заболевания как медико-социальная проблема современности / Е. В. Кузнецов [и др.] // Современные проблемы науки и образования. – 2017. – № 4. – С. 62.

2. Городецкая, И. В. Влияние йодсодержащих гормонов щитовидной железы на центральный отдел стресс- лимитирующей системы / И. В. Городецкая, Е. А. Гусакова // Вестн. ВГМУ. – 2018. – Т. 17, № 3. – С. 7–15.

3. Влияние глюкокортикоидов на морфологию и функцию щитовидной железы крыс / В. В. Виноградов [и др.] // Вес. Нац. акад. навук Беларусi. Сер. бiял. навук. – 2010. – № 3. – С. 87–93.

4. Stress and glucocorticoids increase transthyretin expression in rat choroid plexus via mineralocorticoid and glucocorticoid receptors / A. Martinho [at al.] // J. Mol. Neurosci. – 2012. – Vol. 48, N 1. – P. 1–13. https://doi.org/10.1007/s12031-012-9715-7

5. Sviridov, O. V. Interaction of thyroid hormones with immunoglobulins isolated from human blood serum. I. Parameters of complex formation and the nature of the binding reaction / O. V. Sviridov, M. N. Ermolenko // Biokhimiia. – 1994. – Vol. 59, N 1. – P. 78–87.

6. Immune regulation by glucocorticoids can be linked to cell type-dependent transcriptional responses / L. М. Franco // J. Exp. Med. – 2019. – Vol. 216, N 2. – P. 384–406. https://doi.org/10.1084/jem.20180595

7. Regulation of neuronal thyroid hormone receptor alpha 1 mRNA by hydrocortisone, thyroid hormone and retinoic acid / M. Satyanarayana [et al.] // Dev. Neurosci. – 1994. – Vol. 16, N 5–6. – P. 255–259. https://doi.org/10.1159/000112117

8. Thyroid hormone receptor beta1 gene expression is increased by dexamethasone at transcriptional level in rat liver / M. M. Montesinos [et al.] // Life Sci. – 2006. – Vol. 78, N 22. – P. 2584–2594. https://doi.org/10.1016/j.lfs.2005.10.019

9. Gil-Ibáñez, P. Hormone regulation of gene expression in primary cerebrocortical cells: Role of thyroid hormone receptor subtypes and interactions with retinoic acid and glucocorticoids / P. Gil-Ibáñez, J. Bernal, B. Morte // PLoS ONE. – 2014. – Vol. 9, N 3. – P. 91692. https://doi.org/10.1371/journal.pone.0091692

10. van der Geyten, S. Developmentally defined regulation of thyroid hormone metabolism by glucocorticoids in the rat / S. van der Geyten, V. M. Darras // J. Endocrinol. – 2005. – Vol. 185, N 2. – P. 327–336. https://doi.org/10.1677/joe.1.05974

11. Differential effects of maternal dexamethasone treatment on circulating thyroid hormone concentrations and tissue deiodinase activity in the pregnant ewe and fetus / A. J. Forhead [et al.] // Endocrinology. – 2007. – Vol. 148, N 2. – P. 800–805. https://doi.org/10.1210/en.2006-1194

12. Regulation of thyroid hormone availability by iodothyronine deiodinases at the blood-brain barrier in birds / C. H. Verhoelst [et al.] // Ann. NY Acad. Sci. – 2005. – Vol. 1040, N 1. – P. 501–503. https://doi.org/10.1196/annals.1327.103

13. Hernandez, A. Dexamethasone inhibits growth factor-induced type 3 deiodinase activity and mRNA expression in a cultured cell line derived from rat neonatal brown fat vascular-stromal cells / A. Hernandez, D. L. Germain // Endocrinology. – 2002. – Vol. 143, N 7. – P. 2652–2658. https://doi.org/10.1210/endo.143.7.8923

14. Kakucska, I. Qi. Changes in adrenal status affect hypothalamic thyrotropin-releasing hormone gene expression in parallel with corticotropin-releasing hormone / I. Qi. Kakucska, R. M. Lechan // Endocrinology. – 1995. – Vol. 136, N 7. – P. 2795–2802. https://doi.org/10.1210/endo.136.7.7789304

15. Glucocorticoids decrease thyrotropin-releasing hormone messenger ribonucleic acid expression in the paraventricular nucleus of the human hypothalamus / A. Alkemade [et al.] // J. Clin. Endocrinol. Metabol. – 2005. – Vol. 90, N 1. – P. 323–327. https://doi.org/10.1210/jc.2004-1430

16. Luo, L. G. Glucocorticoids stimulate thyrotropinreleasing hormone gene expression in cultured hypothalamic neurons / L. G. Luo, T. Bruhn, I. M. Jackson // Endocrinology. – 1995. – Vol. 136, N 11. – P. 4945–4950. https://doi.org/10.1210/endo.136.11.7588228

17. Dexamethasone rapidly regulates TRH mRNA levels in hypothalamic cell cultures: interaction with the cAMP pathway / L. Perez-Martinez [et al.] // Neuroendocrinology. – 1998. – Vol. 68, N 5. – P. 345–354. https://doi.org/10.1159/000054383

18. Benický, J. Effects of dexamethasone on pancreatic growth and thyroliberin (TRH) content in neonatal rat pancreas / J. Benický, V. Strbák // Physiol. Res. – 1995. – Vol. 44, N 3. – P. 165–172.

19. Dexamethasone treatment during pregnancy influences the number of TSH cells in rat fetuses / M. Manojlovic- Stojanoski [et al.] // Arch. Biol. Sci. – 2009. – Vol. 60, N 4. – P. 555–560. https://doi.org/10.2298/ABS0804555M

20. Dynamic changes of central thyroid functions in the management of Cushing’s syndrome / S. C. Dogansen [et al.] // Arch. Endocrinol. Metab. – 2018. – Vol. 62, N 2. – P. 164–171. http://dx.doi.org/10.20945/2359-3997000000019

21. Diminished and irregular TSH secretion with delayed acrophase in patients with Cushing’s syndrome / F. Roelfsema [et al.] // Eur. J. Endocrinol. – 2009. – Vol. 161, N 5. – P. 695–703. https://doi.org/10.1530/EJE-09-0580

22. Primary thyroid disorders in endogenous Cushing’s syndrome / H. Niepomniszcze [et al.] // Eur. J. Endocrinol. – 2002. – Vol. 147, N 3. – P. 305–311. https://doi.org/10.1530/eje.0.1470305

23. Thyroid dysfunction in isolated adrenocorticotropic hormone (ACTH) deficiency: case report and literature review / T. Murakami [et al.] // Endocrinol. J. – 1993. – Vol. 40, N 4. – P. 473–478. https://doi.org/10.1507/endocrj.40.473

24. Tsigos, C. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress / C. Tsigos, G. P. Chrousos // J. Psychosom Res. – 2002. – Vol. 53, N 4. – P. 865–871. https://doi.org/10.1016/s0022-3999(02)00429-4

25. Giustina, A. The role of glucocorticoids in the regulation of growth hormone secretion. Mechanisms and clinical significance / A. Giustina, W. B. Wehrenberg // Trends Endocrinol. Metabol. – 1992. – Vol. 3, N 8. – P. 306–311. https://doi.org/10.1016/1043-2760(92)90142-N

26. Thyroid function in children with growth hormone (GH) deficiency during the initial phase of GH replacement therapy – clinical implications / J. Smyczynska [at al.] // Thyroid Res. – 2010. – Vol. 3, N 1. – P. 2. https://doi.org/10.1186/1756-6614-3-2

27. Keskin, M. Effects of 1-year growth hormone replacement therapy on thyroid volume and function of the children and adolescents with idiopathic growth hormone deficiency / M. Keskin, E. Bayramoglu, Z. Aycan // J. Pediatr. Endocrinol. Metab. – 2017. – Vol. 30, N 11. – P. 1187– 1190. https://doi.org/10.1515/jpem-2017-0210

28. An examination of the effects of different doses of recombinant human growth hormone on children with growth hormone deficiency / Y. Xue [et al.] // Exp. Ther. Med. – 2016. – Vol. 11, N 5. – P. 1647–1652. https://doi.org/10.3892/etm.2016.3091

29. Thyroid function in children with growth hormone deficiency during long-term growth hormone replacement therapy / Е. Witkowska-Sędek [et al.] // Cent. Eur. J. Immunol. – 2018. – Vol. 43, N 3. – P. 255–261. https://doi.org/10.5114/ceji.2018.80043

30. Investigation of the mechanisms contributing to the compensatory increase in insulin secretion during dexamethasoneinduced insulin resistance in rhesus macaques / B. P. Cummings [et al.] // J. Endocrinol. – 2013. – Vol. 216, N 2. – P. 207–215. https://doi.org/10.1530/JOE-12-0459

31. Somatostatin inhibits PC Cl3 thyroid cell proliferation through the modulation of phosphotyrosine phosphatase activity / T. Florio [et al.] // J. Biol. Chem. – 1996. – Vol. 271, N 11. – Р. 6129–6136. https://doi.org/10.1074/jbc.271.11.6129

32. Taton, M. Dissociation of the stimuli for cell hypertrophy and cell division in the dog thyrocyte: insulin promotes protein accumulation while TSH triggers DNA synthesis / M. Taton, J. E. Dumont // Exp. Cell Res. – 1995. – Vol. 221, N 2. – P. 530–533. https://doi.org/10.1006/excr.1995.1405

33. Insulin and TSH promote growth in size of PC Cl3 rat thyroid cells, possibly via a pathway different from DNA synthesis: comparison with FRTL-5 cells / T. Kimura [et al.] // Eur. J. Endocrinol. – 1999. – Vol. 140, N 1. – Р. 94–103. https://doi.org/10.1530/eje.0.1400094

34. Roelfsema, V. The growth hormone and insulin-like growth factor axis: its manipulation for the benefit of growth disorders in renal failure / V. Roelfsema, R. G. Clark // J. Am. Soc. Nephrol. – 2001. – Vol. 12, N 6. – P. 1297–1300.

35. Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors / J. E. Dumont [et al.] // Physiol Rev. – 1992. – Vol. 72, N 3. – P. 667–697. https://doi.org/10.1152/physrev.1992.72.3.667

36. Regulation of calcium-permeable TRPV2 channel by insulin in pancreatic-cells / E. Hisanaga [et al.] // Diabetes. – 2009. – Vol. 58, N 1. – P. 174–184. https://doi.org/10.2337/db08-0862

37. Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I / M. Kanzaki [et al.] // Nat. Cell Biol. – 1999. – Vol. 1, N 3. – Р. 165–170. https://doi.org/10.1038/11086

38. Insulin elicits a ROS-activated and an IP3-dependent Ca2+ release, which both impinge on GLUT4 translocation / A. Contreras-Ferrat [et al.] // J. Cell Sci. – 2014. – Vol. 127, N 9. – Р. 1911–1923. https://doi.org/10.1242/jcs.138982


##reviewer.review.form##

Для цытавання:


Гусакова Е.А., Городецкая И.В. Влияние глюкокортикоидных гормонов на функцию щитовидной железы. Известия Национальной академии наук Беларуси. Серия медицинских наук. 2021;18(1):117-126. https://doi.org/10.29235/1814-6023-2021-18-1-117-126

For citation:


Gusakova E.A., Gorodetskaya I.V. Influence of glucocorticoid hormones on the thyroid gland function. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2021;18(1):117-126. (In Russ.) https://doi.org/10.29235/1814-6023-2021-18-1-117-126

Праглядаў: 4872


Creative Commons License
Кантэнт даступны пад ліцэнзіяй Creative Commons Attribution 3.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)