Ciliated columnar epithelium pathomorphosis in children with upper and lower respiratory infections: ultrastructural and nanoscopic analysis
https://doi.org/10.29235/1814-6023-2021-18-1-69-79
Abstract
The cytomorphological profile of nasal epithelium in children with acute and chronic respiratory disorders was characterized. The redistribution of nasal ciliary epithelial cells in favor of the mucus-secreting (goblet) cells was observed (group with acute respiratory infection – ratio 2.3:1; group with chronic lung disease – 1:2.4) with normal values of these indicators 5:1 (control group). The mucosal metaplasia, against a background of local leukocyte infiltration, was detected among 28 patients (64.29 %). Using atomic force microscopy, the pathomorphosis of the cytoplasmic membrane ciliated epithelium was described, which characterized by the changes in roughness parameters (Ra, Rq, Rsk, Rmax, Rsk) and waviness (Wa) in group with chronic lung disease (Ra – 34.94 ± 7.8 nm, Rq – 41.26 ± 7.5, Rmax – 225.55 ± 44.43, Rsk – 1,2, Wa – 43.23 ± 12.4 nm) compared with control group (Ra – 7.22 ± 1.94 nm, Rq – 11.43 ± 1.83, Rmax – 111.83 ± 29.26, Rsk – 0.33, Wa – 83.81 ± 29.55 nm). Several deviations in microgeometry of the cilia form factor were revealed, which associated with formation of abnormally long cilia (10–12 μm), decreasing (0.095–0.15 μm) and/or a thickening (0.3–0.4 μm) of their diameter, as well as spatial disorientation like the “corkscrew twisting”. Based on the electron microscopic analysis, anomalies in external dynein arms of the cilia axoneme were revealed, which made it possible to confirmed in two patients the hereditary respiratory pathology.
About the Authors
A. N. AstashonokBelarus
Andrei N. Astashonok – Ph. D. (Biol.), Senior Researcher
23, Filimonov Str., 220114, Minsk, Republic of Belarus
N. N. Poleshchuk
Belarus
Nikalay N. Poleshchuk – D. Sc. (Med.), Professor, Chief Researcher
23, Filimonov Str., 220114, Minsk, Republic of Belarus
L. V. Rubanik
Belarus
Lyudmila V. Rubanik – Ph. D. (Biol.), Head of the Laboratory
23, Filimonov Str., 220114, Minsk, Republic of Belarus
V. V. Bobrovnichiy
Belarus
Vladimir I. Bobrovnichiy – Ph. D. (Med.), Associate Professor
60/1, Lieutenant Kizhevatov Str., 220024, Minsk, Republic of Belarus
A. V. Petruchenya
Belarus
Anastasiya V. Petruchenya – Paediatrician
1, Frunzenskaya Str., 223053, Minsk region, Republic of Belarus
References
1. Heffler E., Landi M., Caruso C., Fichera S., Gani F., Guida G. [et al.]. Nasal cytology: methodology with application to clinical practice and research. Clinical & Experimental Allergy, 2018, vol. 48, no. 9, pp. 1092–1106. https://doi.org/10.1111/cea.13207
2. Dimauroa G., Ciprandi G., Deperte F., Girardi F., Ladisa E., Latrofa S., Gelardi M. Nasal cytology with deep learning techniques. International Journal of Medical Informatics, 2019, vol. 122, pp. 13–19. https://doi.org/10.1016/j.ijmedinf.2018.11.010
3. Bustamante-Marin X. M., Ostrowski L. E. Cilia and mucociliary clearance. Cold Spring Harbor Perspectives in Biology, 2017, vol. 9, no. 4, p. a028241. https://doi.org/10.1101/cshperspect.a028241
4. Belyakova R. A. Rhinocytogram as a method for the diagnosis of allergic rhinitis. Molodoi uchenyi [Young scientist], 2017, no. 12, pp. 120–123 (in Russian).
5. Gelardi M., Iannuzzi L., Quaranta N., Landi M., Passalacqua G. NASAL cytology: practical aspects and clinical relevance. Clinical and Experimental Allergy, 2016, vol. 46, no. 6, pp. 785–792. https://doi.org/10.1111/cea.12730
6. Laberko E. L., Bogomil’skii M. R. Modern views on the regulation of mucociliary clearance. Vestnik Rossiiskogo gosudarstvennogo meditsinskogo universiteta [Bulletin of the Russian State Medical University], 2015, no. 1, pp. 60–64 (in Russian).
7. Tatochenko V. K. Respiratory disorders in children. Moscow, Pediatriya Publ., 2012. 482 p. (in Russian).
8. Afzelius B. A. Cilia-related diseases. Journal of Pathology, 2004, vol. 204, no. 4, pp. 470–477. https://doi.org/10.1002/path.1652
9. Shapiro A. J., Leigh M. W. Value of transmission electron microscopy for primary ciliary dyskinesia diagnosis in the era of molecular medicine: Genetic defects with normal and non-diagnostic ciliary ultrastructure. Ultrastructural Pathology, 2017, vol. 41, no. 6, pp. 373–385. https://doi.org/10.1080/01913123.2017.1362088
10. Astashonok A. N., Poleshchuk N. N., Rubanik L. V., Zhavnerko G. K. Atomic-force microscopy: construction of biochips for detection and study at nanometer level the surface structure of the infectious agents. Meditsinskie novosti [Medical news], 2018, no. 2, pp. 69–74 (in Russian).
11. Mironov A. A., Komissarchik Ya. Yu., Mironov V. A. Electron microscopy methods in biology and medicine. St. Petersburg, Nauka Publ., 1994. 400 p. (in Russian).
12. Scherzad A., Hagen R., Hackenberg S. Current understanding of nasal epithelial cell mis-differentiation. Journal of Inflammation Research, 2019, vol. 12, pp. 309–317. https://doi.org/10.2147/jir.s180853
13. Gelardi M., Lannuzzi L., Seccia V., Quaranta N. Ciliocytophthoria: cytomorphologic modifications in viral infections of the nasal mucosa. Journal of Cytology and Histology, 2016, vol. 7, no. 2, pp. 1–3. https://doi.org/10.4172/2157-7099.1000s5:005
14. Gudis D., Zhao K.-Q., Cohen N. A. Acquired cilia dysfunction in chronic rhinosinusitis. American Journal of Rhinology and Allergy, 2012, vol. 26, no. 1, pp. 1–6. https://doi.org/10.2500/ajra.2012.26.3716
15. Toskala E., Nuutinen J., Rautianen M. Scanning electron microscopy findings of human respiratory cilia in chronic sinusitis and in recurrent respiratory infections. Journal of Laryngology and Otology, 1995, vol. 109, no. 6, pp. 509–514. https://doi.org/10.1017/s0022215100130580
16. Niggemann B., Miiller A., Nolte A., Schnoy N., Wahn U. Abnormal length of cilia – a cause of primary ciliary dyskinesia – a case report. European Journal of Pediatrics, 1992, vol. 151, no. 1, pp. 73–75. https://doi.org/10.1007/bf02073899
17. Rayner C. F., Rutman A., Dewar A., Greenstone M. A., Wilson R. Ciliary disorientation alone as a cause of primary ciliary dyskinesia syndrome. American Journal of Respiratory and Critical Care Medicine, 1996, vol. 153, no. 3, pp. 1123–1129. https://doi.org/10.1164/ajrccm.153.3.8630555
18. Tsang K. W., Tipoe G. L., Mak J. C., Sun J., Wong M., Leung R. [et al.]. Ciliary central microtubular orientation is of no clinical significance in bronchiectasis. Respiratory Medicine, 2005, vol. 99, no. 3, pp. 290–297. https://doi.org/10.1016/j.rmed.2004.08.005
19. Baranov A. A., Namazova-Baranova L. S., Vishneva E. A., Selimzyanova L. R., Bakradze M. D., Tsygina E. N., Lazareva A. V., Katosova L. K., Gorinova Yu. V., Kustova O. V. Primary ciliary dyskinesia in children. Pediatricheskaya farmakologiya [Pediatric pharmacology], 2018, vol. 15, no. 1, pp. 20–31 (in Russian).
20. Bogorad A. E., D’yakova S. E., Mizernitskii Yu. L. Primary ciliary dyskinesia: modern approaches for diagnosis and therapy. Rossiiskii vestnik perinatologii i pediatrii [Russian bulletin of perinatology and pediatrics], 2019, no. 5, pp. 123–133 (in Russian).
21. Leigh M. W., Horani A., Kinghorn B., O’Connor M. G., Zariwala M. A., Knowles M. R. Primary ciliary dyskinesia (PCD): a genetic disorder of motile cilia. Translational Science of Rare Diseases, 2019, vol. 4, no. 1–2, pp. 51–75. https://doi.org/10.3233/trd-190036
Review
For citations:
Astashonok A.N., Poleshchuk N.N., Rubanik L.V., Bobrovnichiy V.V., Petruchenya A.V. Ciliated columnar epithelium pathomorphosis in children with upper and lower respiratory infections: ultrastructural and nanoscopic analysis. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2021;18(1):69-79. (In Russ.) https://doi.org/10.29235/1814-6023-2021-18-1-69-79