Correction of metabolic disorders in patients with aneurysmal intracranial hemorrhages
https://doi.org/10.29235/1814-6023-2020-17-4-470-479
Abstract
The article presents data assessment of the severity of the clinical condition and a number of biochemical parameters in 51 patients with aneurysmal intracranial hemorrhage on the 10th day, on average, after the rupture of the arterial aneurysm and after treatment with the additional use of magnesium sulfate to standard therapy in the postoperative period. It is shown, that at the time of hospitalization, 75 % of patients in the control group and 50 % of patients in the main group had cerebral vascular spasm according to transcranial dopplerography; activation of lipid peroxidation processes, a decrease in superoxide dismutase activity, an increase in the content of vascular endothelial growth factor and highly sensitive C-reactive protein (CRP) with a decrease in the level of stable nitrogen monoxide exchange products were detected. A statistically significant improvement in the clinical condition of patients on the Hunt-Hess scale, the modified Fisher scale, and an increase in the score on the Glasgow coma scale with normalization of pro- and antioxidant status of the blood were revealed in the main group after neurosurgical treatment and course use of magnesium sulfate. At the same time, high levels of highly sensitive CRP and low levels of nitrates/nitrites in the patients blood of both groups are maintained. Consequently, the additional use of magnesium sulfate improves the clinical condition of patients with intracranial hemorrhage and increases the antioxidant potential of the blood in the postoperative period.
About the Authors
N. I. NechipurenkoBelarus
Natalia I. Nechipurenko – D. Sc. (Med.), Professor, Head of the Laboratory
24, F. Skorina Str., 220114, Minsk
R. R. Sidorovich
Belarus
Ryszard R. Sidorovich – D. Sc. (Med.), Assistant Professor, Director
24, F. Skorina Str., 220114, Minsk
I. D. Pashkouskaya
Belarus
Irina D. Pashkovskaya – Ph. D. (Biol.), Leading Researcher
24, F. Skorina Str., 220114, Minsk
A. I. Ahremchuk
Belarus
Anton I. Ahremchuk – Neurosurgeon
24, F. Skorina Str., 220114, Minsk
T. A. Prokopenko
Belarus
Tatiana A. Prokopenko – Junior Researcher
24, F. Skorina Str., 220114, Minsk
References
1. Béjot Y., Cordonnier C., Durier J., Aboa-Eboulé C., Rouaud O., Giroud M. Intracerebral haemorrhage profiles are changing: results from the Dijon population-based study. Brain, 2013, vol. 136, no. 2, pp. 658–664. https://doi.org/10.1093/brain/aws349
2. Krylov V. V., Kalinkin A. A., Petrikov S. S. The pathogenesis of cerebral angiospasm and brain ischemia in patients with non-traumatic subarachnoid hemorrhage due to cerebral aneurysm rupture. Nevrologicheskii zhurnal [Neurological journal], 2014, vol. 19, no. 5, pp. 4–12 (in Russian).
3. Keep R. F., Zhou N., Xiang J., Andjelkovic A. V., Hua Y., Xi G. Vascular disruption and blood-brain barrier dysfunction in intracerebral hemorrhage. Fluids Barriers CNS, 2014, vol. 11, no. 1, art. 18. https://doi.org/10.1186/2045-8118-11-18
4. Zhang Z.-D., Yamini B., Komuro T., Ono S., Johns L., Marton L. S., Weir B., Macdonald R. L. Delayed clot removal and experimental vasospasm. Acta Neurochirurgica Supplement, 2001, vol. 77, pp. 33–35. https://doi.org/10.1007/978-3-7091-6232-3_8
5. Fisher C. M., Kistler J. P., Davis J. M. Relation of cerebral vasospasm to subarachnoid hemorrage visualized by computerized tomographic scanning. Neurosurgery, 1980, vol. 6, no. 1, pp. 1–9. https://doi.org/10.1227/00006123-198001000-00001
6. Mishizawa S., Laher I. Signaling mechanisms in cerebral vasospasm. Trends Cardiovascular Medicine, 2005, vol. 15, no. 1, pp. 24–34. https://doi.org/10.1016/j.tcm.2004.12.002
7. Macdonald R. L., Weir B. K. Cerebral vasospasm and free radicals. Free Radical Biology and Medicine, 1994, vol. 16, no. 5, pp. 633–643. https://doi.org/10.1016/0891-5849(94)90064-7
8. Polidon M. C., Frei B., Rordorf G., Ogilvy C. S., Beal M. F. Increased levels of plasma cholesteryl ester hydroperoxides in patients with subarachnoid hemorrhage. Free Radical Biology and Medicine, 1997, vol. 23, no. 5, pp. 762–767. https://doi.org/10.1016/s0891-5849(97)00053-1
9. Kolias A. G., Sen J., Belli A. Pathogenesis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage putative mechanisms and novel approaches. Journal of Neuroscience Research, 2009, vol. 87, no. 1, pp. 1–11. https://doi.org/10.1002/jnr.21823
10. Rejdak K., Petzold A., Sharpe M. A., Kay A. D., Kerr M., Keir G., Thompson E. J., Giovannoni G. Cerebrospinal fluid nitrite/nitrate correlated with oxyhemoglobin and outcome in patients with subarachnoid hemorrhage. Journal of the Neurological Sciences, 2004, vol. 219, no. 1–2, pp. 71–76. https://doi.org/10.1016/j.jns.2003.12.011
11. Han B. H., Vellimana A. K., Zhou M. L., Milner E., Zipfel G. J. Phosphodiesterase 5 inhibition attenuates cerebral vasospasm and improves functional recovery after experimental subarachnoid hemorrhage. Neurosurgery, 2012, vol. 70, no. 1, pp. 178–187. https://doi.org/10.1227/neu.0b013e31822ec2b0
12. Frösen J., Tulamo R., Paetau A., Laaksamo E., Korja M., Laakso A., Niemelä M., Hernesniemi J. Saccular intracranial aneurysm: pathology and mechanisms. Acta Neuropatholоgy, 2012, vol. 123, no. 6, pp. 773–786. https://doi.org/10.1007/s00401-011-0939-3
13. Fateeva V. V., Vorob’eva O. V. Markers of endothelial dysfunction in chronic cerebral ischemia. Zhurnal nevropatologii i psikhiatrii imeni S. S. Korsakova [Journal of Neuropathology and Psychiatry named after S. S. Korsakov], 2017, no. 4, pp. 107–111 (in Russian).
14. Zhou Y., Wang Y., Wang J., Stetler R. A., Yang Q. W. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Progress in Neurobiology, 2014, vol. 115, pp. 25–44. https://doi.org/10.1016/j.pneurobio.2013.11.003
15. Maiuri F., Gallicchio B., Donati P., Carandente M. The blood leukocyte count and its prognostic significance in subarachnoid hemorrhage. Journal of Neurosurgery Science, 1987, vol. 31, no. 2, pp. 45–48.
16. Gaetani P., Tartara F., Pignatti P., Tancioni F., Rodriguez R., Benedetti F. D. Cisternal CSF levels of cytokines after subarachnoid hemorrhage. Neurological Research, 1998, vol. 20, no. 4, pp. 337–342. https://doi.org/10.1080/01616412.1998.11740528
17. Al-TamimiY. Z., Bhargava D. , OrsiN. M., TeraifiA., CummingsM., Ekbote U. V., Quinn A. C., Homer-Vanniasinkam S., Ross S.Compartmentalisation of the inflammatory response following aneurysmal subarachnoid haemorrhage. Cytokine, 2019, vol. 123, р. 154778. https://doi.org/10.1016/j.cyto.2019.15477
18. van den Bergh W. M., Zuur J. K., Kamerling N. A., van Asseldonk J. T. H., Rinkel G. J. E., Tulleken C. A. F., Nicolay K. Role magnesium in the reduction of ischemic depolarization and lesion volum after experimental subarachnoid hemorrhage. Journal of Neurosurgery, 2002, vol. 97, pp. 416–422. https://doi.org/10.3171/jns.2002.97.2.0416
19. Adams H. P. (Jr.), del Zoppo G., Alberts M. J., Bhatt D. L., Brass L., Furlan A. [et al.]. Guidelines for the early management of adults with ischemic stroke: a guideline from the AHA/ASA Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vasrular Disease and Quality of Care Outcomes in Research Interdiscriplinary Working Groups. American Academy of Neurology affirms the value of this guideline as on educational tool for neurologists, 2007, vol. 115, no. 20, pp. 478–534. https://doi.org/10.1161/circulationaha.107.181486
20. Feng D.-F., Zhu Z.-A., Lu Y.-C. Effects of magnesium sulfate on traumatic brain edema in rats. Chinese Journal of Traumatology, 2004, vol. 7, no. 3, pp. 148–152.
21. Muroi C., Terzic A., Fortunati M., Yonekawa Y., Keller E. Magnesium sulfate in the management of patients with aneurysmal subarachnoid hemorrhage: a randomized, placebo-controlled, dose-adapted trial. Surgical Neurology, 2008, vol. 69, no. 1, pp. 33–39. https://doi.org/10.1016/j.surneu.2007.07.015
22. Prevedello D. M.-S., Cordeiro J. G., de Morais A. L., Saucedo N. S. Jr., Chen I. B., Araújo J. C. Magnesium sulfate: role as possible attenuating factor in vasospasm morbidity. Surgical Neurology, 2006, vol. 65, pp. S14–S20. https://doi.org/10.1016/j.surneu.2005.11.035
23. Kostyuk V. A., Potapovich A. I. Determination of lipid peroxidation products using thiobarbituric acid in anaerobic conditions. Voprosy meditsinskoi khimii [Problems of medical chemistry], 1987, vol. 33, no. 3, pp. 115–118 (in Russian).
24. Kostyuk V. A., Potapovich A. I., Kovaleva Zh. V. A simple and sensitive method for determining the activity of superoxide dismutase, based on the reaction of oxidation of quercetin. Voprosy meditsinskoi khimii [Problems of medical chemistry], 1990, vol. 36, no. 2, pp. 88–91 (in Russian).
25. Pluta R. M., Oldfield E. H. Analysis of nitric oxide (NO) in cerebral vasospasm after aneursymal bleeding. Reviews on Recent Clinical Trials, 2007, vol. 2, no. 1, pp. 59–67. https://doi.org/10.2174/157488707779318062
26. Coleman H. A., Mare T., Parkington H. C. Endothelial potassium channels, endothelium-dependent hyperpolarization and the regulation of vascular tone in health and disease. Clinical and Experimental Pharmacology and Physiology, 2004, vol. 31, no. 9, pp. 641–649. https://doi.org/10.1111/j.1440-1681.2004.04053.x
27. Mazurov V. I., Yakusheva V. A. Endothelial dysfunction in metabolic syndrome. Efferentnaya terapiya [Efferent therapy], 2006, vol. 12, no. 3, pp. 19–24 (in Russian).
28. Moncada S. Nitric oxide and oxygen: actions and interactions in health and disease. Redox Biology, 2015, vol. 5, p. 421. https://doi.org/10.1016/j.redox.2015.09.034
Review
For citations:
Nechipurenko N.I., Sidorovich R.R., Pashkouskaya I.D., Ahremchuk A.I., Prokopenko T.A. Correction of metabolic disorders in patients with aneurysmal intracranial hemorrhages. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2020;17(4):470-479. (In Russ.) https://doi.org/10.29235/1814-6023-2020-17-4-470-479