Preview

Proceedings of the National Academy of Sciences of Belarus, Medical series

Advanced search

Changes in the concentration of sulfur-containing amino acids in the brain after methionine load in the experimentChanges in the concentration of sulfur-containing amino acids in the brain after methionine load in the experiment

https://doi.org/10.29235/1814-6023-2020-17-4-461-469

Abstract

The effect of methionine overload on the state of the pool of sulfur-containing amino acids and their metabolites was studied in the various brain structures determined by reverse phase high performance liquid chromatography (HPLC). In all regions of the brain studied, methionine led to a unidirectional imbalance of sulfur-containing compounds: there was an increase in the concentrations of methionine, cystathionine and hypotaurine. The most pronounced increase in methionine and hypotaurine levels was observed in the striatum, cystathionine in the hemispheres. A significant increase in taurine concentration was observed only in the hypothalamus and striatum. In other parts of the brain a tendency to increase its level was shown. In all brain regions studied except the striatum, serine levels were decreased. In the cerebellum, in comparison with other regions, an increase in the level of cysteic acid and a decrease in the level of cysteinesulfinic acid were observed, which indicates that taurine synthesis is occurred mainly through the cysteine sulfinate oxidation.

About the Authors

Ya. I. Novogrodskaya
Grodno State Medical University
Belarus

Yana I. Novogrodskaya ‒ Postgraduate student

80, Gorky Str., 230015, Grodno



Ye. M. Doroshenko
Grodno State Medical University
Belarus

Yevgeny M. Doroshenko ‒ Ph. D. (Biol.), Assistant Professor, Leading Researche

80, Gorky Str., 230015, Grodno



M. N. Kurbat
Grodno State Medical University
Belarus

Mikhail N. Kurbat ‒ Ph. D. (Med.), Assistant Professor, Head of the Laboratory

80, Gorky Str., 230015, Grodno



References

1. Yano H., Nakaso K., Yasui K., Wakutani Y., Nakayasu H., Kowa H., Adachi Y., Nakashima K. Mutations of the MTHFR gene (428C>T and [458G>T+459C>T]) markedly decrease MTHFR enzyme activity. Neurogenetics, 2004, vol. 5, no. 2, pp. 135–140. https://doi.org/10.1007/s10048-004-0177-0

2. Yakub M., Moti N., Parveen S., Chaudhry B., Azam I., Iqbal M. P. Polymorphisms in MTHFR, MS and CBS genes and homocysteine levels in a Pakistani population. PLoS ONE, 2012, vol. 7, no. 3, p. e33222. https://doi.org/10.1371/journal.pone.0033222

3. Hou N. O., Chen S., Chen F., Jiang M., Zhang J., Yang Y., Zhu B., Bai X., Hu Y., Huang H., Xu C. Association between premature ovarian failure, polymorphisms in MTHFR and MTRR genes and serum homocysteine concentration. Reproductive BioMedicine Online, 2016, vol. 32, no. 4, pp. 407–413. https://doi.org/10.1016/j.rbmo.2016.01.009

4. Qin X., Li J., Cui Y., Liu Z., Zhao Z., Ge J. [et al.]. MTHFR C677T and MTR A2756G polymorphisms and the homocysteine lowering efficacy of different doses of folic acid in hypertensive Chinese adults. Nutrition Journal, 2012, vol. 11, art. 2. https://doi.org/10.1186/1475-2891-11-2

5. Folbergrová J., Druga R., Tsenov G., Haugvicová R., Otáhal J. Posttreatment with group II metabotropic glutamate receptor agonist 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate is only weakly effective on seizures in immature rats. Brain Research, 2009, vol. 1273, pp. 144–154. https://doi.org/10.1016/j.brainres.2009.03.045

6. Gundogdu G., Dodurga Y., Kucukatay V. The sulfite molecule enhances homocysteine toxicity in SH-SY5Y cells. Molecular Biology Reports, 2019, vol. 46, no. 4, pp. 4017–4025. https://doi.org/10.1007/s11033-019-04850-3

7. Ziemińska E., Stafiej A., Łazarewicz J. W. Role of group I metabotropic glutamate receptors and NMDA receptors in homocysteine-evoked acute neurodegeneration of cultured cerebellar granule neurons. Neurochemistry International, 2003, vol. 43, no. 4–5, pp. 481–492. https://doi.org/10.1016/s0197-0186(03)00038-x

8. Boldyrev A. A. Why toxic of homocysteine? Priroda [Nature], 2009, no. 10, pp. 18–23 (in Russian).

9. Benz V., Grima G., Do K. Q. Glutamate-induced homocysteic acid release from astrocytes: possible implication in glia-neuron signaling. Neuroscience, 2004, vol. 124, no. 2, pp. 377–386. https://doi.org/10.1016/j.neuroscience.2003.08.067

10. Arzumanyan E. S., Stepanova M. S. Mechanisms of homocysteic acid neurotoxicity. Neurochemical Journal, 2010, vol. 4, no. 3, pp. 222–227. https://doi.org/10.1134/s1819712410030104

11. Makhro A. V., Bulygina E. R., Boldyrev A. A. Еffect of homocysteine and homocysteinic acid on cerebellar granule cells. Neirokhimiya [Neurochemistry], 2006, vol. 23, no. 3, pp. 179–184 (in Russian).

12. Abushik P. A., Karelina T. V., Sibarov D. A., Stepanenko Y. D., Antonov S. M., Giniatullin R. A. Homocysteineinduced membrane currents, calcium responses and changes in mitochondrial potential in rat cortical neurons. Journal of Evolutionary Biochemistry and Physiology, 2015, vol. 51, no. 4, pp. 296–304. https://doi.org/10.1134/s0022093015040055

13. Bhatti J. S., Bhatti G. K., Reddy P. H. Mitochondrial dysfunction and oxidative stress in metabolic disorders ‒ a step towards mitochondria based therapeutic strategies. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 2017, vol. 1863, no. 5, pp. 1066–1077. https://doi.org/10.1016/j.bbadis.2016.11.010

14. Jadavji N. M., Deng L., Leclerc D., Malysheva O., Bedell B. J., Caudill M. A., Rozen R. Severe methylenetetrahydrofolate reductase deficiency in mice results in behavioral anomalies with morphological and biochemical changes in hippocampus. Molecular Genetics and Metabolism, 2012, vol. 106, no. 2, pp. 149–159. https://doi.org/10.1016/j.ymgme.2012.03.020

15. Baydas G., Kutlu S., Naziroglu M., Canpolat S., Sandal S., Ozcan M., Kelestimur H. Inhibitory effects of melatonin on neural lipid peroxidation induced by intracerebroventricularly administered homocysteine. Journal of Pineal Research, 2003, vol. 34, no. 1, pp. 36–39. https://doi.org/10.1034/j.1600-079x.2003.02939.x

16. Arutjunyan A., Kozina L., Stvolinskiy S., Bulygina Y., Mashkina A., Khavinson V. Pinealon protects the rat offspring from prenatal hyperhomocysteinemia. International Journal of Clinical and Experimental Medicine, 2012, vol. 5, no. 2, pp. 179–185.

17. Shcherbitskaya A. D., Milyutina Yu. P., Zaloznyaya I. V., Arutyunyan A. V., Nalivaeva N. N., Zhuravin I. A. The effects of prenatal hyperhomocysteinemia on the formation of memory and the contents of biogenic amines in the rat hippocampus. Neirokhimiya [Neurochemistry], 2017, vol. 34, no. 4, pp. 296–302 (in Russian).

18. Blaise S. A., Nédélec E., Schroeder H., Alberto J. M., Bossenmeyer-Pourié C., Guéant J. L., Daval J. L. Gestational vitamin B deficiency leads to homocysteine-associated brain apoptosis and alters neurobehavioral development in rats. American Journal of Pathology, 2007, vol. 170, no. 2, pp. 667–679. https://doi.org/10.2353/ajpath.2007.060339

19. Sachdev P. S. Homocysteine and brain atrophy. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2005, vol. 29, no. 7, pp. 1152–1161. https://doi.org/10.1016/j.pnpbpp.2005.06.026

20. Robert K., Vialard F., Thiery E., Toyama K., Sinet P. M., Janel N., London J. Expression of the cystathionineβ-synthase (CBS) gene during mouse development and immunolocalization in adult brain. Journal of Histochemistry and Cytochemistry, 2003, vol. 51, no. 3, pp. 363–371. https://doi.org/10.1177/002215540305100311

21. Finkelstein J. D. Methionine metabolism in mammals. Journal of Nutritional Biochemistry, 1990, vol. 1, no. 5, pp. 228–237. https://doi.org/10.1016/0955-2863(90)90070-2

22. Medvedev D. V., Zvyagina V. I., Fomina M. A. Modeling of severe hyperhomocysteinemia in rats. Rossiiskii medikobiologicheskii vestnik imeni akademika I. P. Pavlova [Russian medical and biological bulletin named after academician I. P. Pavlov], 2014, vol. 22, no. 4, pp. 42–46 (in Russian).

23. Glowinsky J., Iversen L. L. Regional studies of catecholamines in the rat brainthe disposition of [ 3 H]norepinephrine, [ 3 H]dopamine and [ 3 H]dopa in various regions of the brain. Journal of Neurochemistry, 1966, vol. 13, no. 8, pp. 655–669. https://doi.org/10.1111/j.1471-4159.1966.tb09873.x

24. Doroshenko E. M., Snezhitskii V. A., Lelevich V. V. Structure of the pool of free amino acids and their derivatives in plasma of patients with ishemic heart disease and chronic cardiac insufficiency. Zhurnal Grodnenskogo gosudarstvennogo meditsinskogo universiteta [Journal of Grodno State Medical University], 2017, vol. 15, no. 5, pp. 551–555 (in Russian).

25. Durand P. P., Fortin L. J., Lussier-Cacan S., Davignon J., Blache D. Hyperhomocysteinemia induced by folic acid deficiency and methionine load – applications of a modified HPLC method. Clinica Chimica Acta, 1996, vol. 252, no. 1, pp. 83–93. https://doi.org/10.1016/0009-8981(96)06325-5

26. Krijt J., Vacková M., Kožich V. Measurement of homocysteine and other aminothiols in plasma: advantages of using tris(2-carboxyethyl)phosphine as reductant compared with tri-n-butylphosphine. Clinical Chemistry, 2001, vol. 47, no. 10, pp. 1821–1828. https://doi.org/10.1093/clinchem/47.10.1821

27. Zaichko N. V., Yurchenko P. A., Fil’chukov D. A. The level of hydrogen sulphide and antioxidant system in rat brain in isolated hyperhomocysteinemia and its correction. Meditsinskii zhurnal [Medical journal], 2016, vol. 1, no. 55, pp. 109–112 (in Russian).

28. Nagasawa M., Ikeda H., Kawase T., Iwamoto A., Yasuo S., Furuse M. Suppressed expression of cystathionine β-synthase and smaller cerebellum in Wistar Kyoto rats. Brain Research, 2015, vol. 1624, pp. 208–213. https://doi.org/10.1016/j.brainres.2015.07.043

29. Jiang X., Yang F., Brailoiu E., Jakubowski H., Dun N. J., Schafer A. I., Yang X., Durante W., Wang H. Differential regulation of homocysteine transport in vascular endothelial and smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, vol. 27, no. 9, pp. 1976–1983. https://doi.org/10.1161/ATVBAHA.107.148544

30. Büdy B., O’Neill R. M., DiBello P. M., Sengupta S., Jacobsen D. W. Homocysteine transport by human aortic endothelial cells: Identification and properties of import systems. Archives of Biochemistry and Biophysics, 2006, vol. 446, no. 2, pp. 119–130. https://doi.org/10.1016/j.abb.2005.12.014

31. Sitnikova L. S., Ivanova M. A., Stepanenko Y. D., Karelina T. V., Sibarov D. A., Abushik P. A., Antonov S. M., Giniatullin R. Collapse of neuronal energy balance as a basis of L-homocysteine neurotoxicity. Biochemistry (Moscow) Supplement. Series A: Membrane and Cell Biology, 2018, vol. 12, no. 4, pp. 360–368 (in Russian).

32. Sibarov D. A., Abushik P. A., Giniatullin R., Antonov S. M. GluN2A subunit-containing NMDA receptors are the preferential neuronal targets of homocysteine. Frontiers in Cellular Neuroscience, 2016, vol. 10, no. 246, pp. 1–11. https://doi.org/10.3389/fncel.2016.00246

33. Lipton S. A., Kim W. K., Choi Y. B., Kumar S., D’Emilia D. M., Rayudu P. V., Arnelle D. R., Stamler J. S. Neurotoxicity associated with dual actions of homocysteine at the N-methyl-d-aspartate receptor. Proceedings of the National Academy of Sciences, 1997, vol. 94, no. 11, pp. 5923–5928. https://doi.org/10.1073/pnas.94.11.5923

34. Sibarov D. A., Giniatullin R., Antonov S. M. High sensitivity of cerebellar neurons to homocysteine is determined by expression of GluN2C and GluN2D subunits of NMDA receptors. Biochemical and Biophysical Research Communications, 2018, vol. 506, no. 3, pp. 648–652. https://doi.org/10.1016/j.bbrc.2018.10.140

35. Abushik P. A., Bart G., Korhonen P., Leinonen H., Giniatullina R., Sibarov D. A., Levonen A. L., Malm T., Antonov S. M., Giniatullin R. Pro-nociceptive migraine mediator CGRP provides neuroprotection of sensory, cortical and cerebellar neurons via multi-kinase signaling. Cephalalgia, 2017, vol. 37, no. 14, pp. 1373–1383. https://doi.org/10.1177/0333102416681588

36. Deep S. N., Mitra S., Rajagopal S., Paul S., Poddar R. GluN2A-NMDA receptor-mediated sustained Ca2+ influx leads to homocysteine-induced neuronal cell death. Journal of Biological Chemistry, 2019, vol. 294, no. 29, pp. 11154–11165. https://doi.org/10.1074/jbc.RA119.008820

37. Arutjunyan A. V., Milyutina Y. P., Kerkeshko G. O., Zalozniaia I. V., Mikhel A. V., Shcherbitskaia A. D. Neurotrophins of the fetal brain and placenta in prenatal hyperhomocysteinemia. Biochemistry (Moscow), 2020, vol. 85, no. 2, pp. 213–223. https://doi.org/10.1134/S000629792002008X


Review

For citations:


Novogrodskaya Ya.I., Doroshenko Ye.M., Kurbat M.N. Changes in the concentration of sulfur-containing amino acids in the brain after methionine load in the experimentChanges in the concentration of sulfur-containing amino acids in the brain after methionine load in the experiment. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2020;17(4):461-469. (In Russ.) https://doi.org/10.29235/1814-6023-2020-17-4-461-469

Views: 683


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)