1. Cotmore S. F., Agbandje-McKenna M., Chiorini J. A., Gatherer D., Mukha D. V., Pintel D. J., Qiu J., SoderlundVenermo M., Tattersall P., Tijssen P. Rationalization and extension of the taxonomy of the family Parvoviridae. ICTV official taxonomy: Updates since the 8th Report, code 2013.001a-aaaV. International Committee on Taxonomy of Viruses (ICTV). Washington, 2013. 65 r.
2. Heegaard E. D., Brown K. E. Human parvovirus B19. Clinical Microbiology Reviews, 2002, vol. 15, no. 3, pp. 485-505. https://doi.org/10.1128/cmr.15.3.485-505.2002
3. Tu M., Liu F., Chen Sh., Wang M., Cheng A. Role of capsid proteins in parvoviruses infection. Virology Journal, 2015, vol. 12, art. 114. https://doi.org/10.1186/s12985-015-0344-y
4. Cotmore S. F., Agbandje-McKenna M., Canuti M., Chiorini J. A., Eis-Hubinger A. M., Hughes J. [et al.]. ICTV Virus Taxonomy Profile: Parvoviridae. ICTV Report Consortium. Journal of General Virology, 2019, vol. 100, no. 3, pp. 367-368. https://doi.org/10.1099/jgv.0.001212
5. Dong Y., Huang Y., Wang Y., Xu P., Yang Y., Liu K., Tijssen P., Peng J., Li Y. The effects of the 11 kDa protein and the putative X protein on the p6 promoter activity of parvovirus B19 in Hela cells. Virus Genes, 2013, vol. 46, no. 1, pp. 167-169. https://doi.org/10.1007/s11262-012-0839-1
6. Bonvicini F., Filippone C., Delbarba S., Manaresi E., Zerbini M., Musiani M., Gallinella G. Parvovirus B19 genome as a single, two-state replicative and transcriptional unit. Virology, 2006, vol. 347, no. 2, pp. 447-454. https://doi.org/10.1016/j. virol.2005.12.014
7. Bonvicini F., Filippone C., Manaresi E., Zerbini M., Musiani M., Gallinella G. Functional analysis and quantitative determination of the expression profile of human parvovirus B19. Virology, 2008, vol. 381, no. 2, pp. 168-177. https://doi.org/10.1016/j.virol.2008.09.002
8. Zhi N., Mills I. P., Lu J., Wong S., Filippone C., Brown K. E. Molecular and functional analyses of a human parvovirus B19 infectious clone demonstrates essential roles for NS1, VP1, and the 11-kilodalton protein in virus replication and infectivity. Journal of Virology, 2006, vol. 80, no. 12, pp. 5941-5950. https://doi.org/10.1128/JVI.02430-05
9. Morita E., Nakashima A., Asao H., Sato H., Sugamura K. Human parvovirus B19 nonstructural protein (NS1) induces cell cycle arrest at G(1) phase. Journal of Virology, 2003, vol. 77, no. 5, pp. 2915-2921. https://doi.org/10.1128/jvi.77.5.2915- 2921.2003
10. Wan Z., Zhi N., Wong S., Keyvanfar K., Liu D., Raghavachari N. [et al.]. Human parvovirus B19 causes cell cycle arrest of human erythroid progenitors via deregulation of the E2F family of transcription factors. Journal of Clinical Investigation, 2010, vol. 120, no. 10, pp. 3530-3544. https://doi.org/10.1172/JCI41805
11. Kaufmann B., Simpson A. A., Rossmann M. G. The structure of human parvovirus B19. Proceedings of the National Academy of Sciences of the United States of America, 2004, vol. 101, no. 32, pp. 11628-11633. https://doi.org/10.1073/pnas.0402992101
12. Dorsch S., Kaufmann B., Schaible U., Prohaska E., Wolf H., Modrow S. The VP1-unique region of parvovirus B19: amino acid variability and antigenic stability. Journal of General Virology, 2001, vol. 82, no. 1, pp. 191-199. https://doi.org/10.1099/0022-1317-82-1-191
13. Anderson S., Momoeda M., Kawase M., Kajigaya S., Young N. S. Peptides derived from the unique region of B19 parvovirus minor capsid protein elicit neutralizing antibodies in rabbits. Virology, 1995, vol. 206, no. 1, pp. 626-632. https://doi.org/10.1016/s0042-6822(95)80079-4
14. Zuffi E., Manaresi E., Gallinella G., Gentilomi G. A., Venturoli S., Zerbini M., Musiani M. Identification of immunodominant peptide in the parvovirus B19 VP1 unique region able to elicit a long-lasting immune response in humans. Viral Immunology, 2001, vol. 14, no. 2, pp. 151-158. https://doi.org/10.1089/088282401750234529
15. Zádori Z., Szelei J., Lacoste M. C., Li Y., Gariépy S., Raymond P., Allaire M., Nabi I. R., Tijssen P. A viral phospholipase A2 is required for parvovirus infectivity. Developmental Cell, 2001, vol. 1, pp. 291-302. https://doi.org/10.1016/s1534-5807(01)00031-4
16. Filippone C., Zhi N., Wong S., Lu J., Kajigaya S., Gallinella G., Kakkola L., Söderlund-Venermo M., Young N. S., Brown K. E. VP1u phospholipase activity is critical for infectivity of full-length parvovirus B19 genomic clones. Virology, 2008, vol. 374, no. 2, pp. 444-452. https://doi.org/10.1016/j.virol.2008.01.002
17. Deng X., Dong Y., Yi Q., Huang Y., Zhao D., Yang Y., Tijssen P., Qiu J., Liu K., Li Y. The determinants for the enzyme activity of human parvovirus B19 phospholipase A2 (PLA2) and its influence on cultured cells. PLoS ONE, 2013, vol. 8, no. 4, p. e61440. https://doi.org/10.1371/journal.pone.0061440
18. Kaufmann B., Chipman P. R., Kostyuchenko V. A., Modrow S., Rossmann M. G. Visualization of the externalized VP2 N termini of infectious human parvovirus B19. Journal of Virology, 2008, vol. 82, no. 15, pp. 7306-7312. https://doi.org/10.1128/JVI.00512-08
19. Servant A., Laperche S., Lallemand F., Marinho V., De Saint Maur G., Meritet J. F., Garbarg-Chenon A. Genetic diversity within human erythroviruses: identification of three genotypes. Journal of Virology, 2002, vol. 76, no. 18, pp. 9124- 9134. https://doi.org/10.1128/jvi.76.18.9124-9134.2002
20. Toan N. L., Duechting A., Kremsner P. G., Song L. H., Ebinger M., Aberle S. [et al.]. Phylogenetic analysis of human parvovirus B19, indicating two subgroups of genotype 1 in Vietnamese patients. Journal of General Virology, 2006, vol. 87, no. 10, pp. 2941-2949. https://doi.org/10.1099/vir.0.82037-0
21. Parsyan A., Szmaragd C., Allain J.-P., Candotti D. Identification and genetic diversity of two human parvovirus B19 genotype 3 subtypes. Journal of General Virology, 2007, vol. 88, no. 2, pp. 428-431. https://doi.org/10.1099/vir.0.82496-0
22. Ivanova S. K., Mihneva Z. G., Toshev A. K., Kovaleva V. P., Andonova L. G., Muller C. P., Hübschen J. M. Insights into epidemiology of human parvovirus B19 and detection of an unusual genotype 2 variant, Bulgaria, 2004 to 2013. Eurosurveillance, 2016, vol. 21, no. 4, pii 30116. https://doi.org/10.2807/1560-7917.ES.2016.21.4.30116
23. Molenaar-de Backer M. W. A., Lukashov V. V., van Binnendijk R. S., Boot H. J., Zaaijer H. L. Global co-existence of two evolutionary lineages of parvovirus B19 1a, different in genome-wide synonymous positions. PLoS ONE, 2012, vol. 7, no. 8, p. e43206. https://doi.org/10.1371/journal.pone.0043206
24. Slavov S. N., Haddad S. K., Silva-Pinto A. C., Amarilla A. A., Alfonso H. L., Aquino V. H., Covas D. T. Molecular and phylogenetic analyses of human parvovirus B19 isolated from Brazilian patients with sickle cell disease and β-thalassemia major and healthy blood donors. Journal of Medical Virology, 2012, vol. 84, no. 10, pp. 1652-1665. https://doi.org/10.1002/jmv.23358
25. Yermalovich M. A., Hübschen J. M., Semeiko G. V., Samoilovich E. O., Muller C. P. Human parvovirus B19 surveillance in patients with rash and fever from Belarus. Journal of Medical Virology, 2012, vol. 84, no. 6, pp. 973-978. https://doi.org/10.1002/jmv.23294
26. Ermolovich M. A., Semeiko G. V., Samoilovich E. O. Genetic variants of parvovirus B19 circulating in Belarus during the epidemic cycle of infection (2005-2016). Vestsi Natsyyanal’nai akademii navuk Belarusi. Seriya meditsinskikh navuk = Proceedings of the National Academy of Sciences of Belarus. Medical series, 2019, vol. 16, no. 1, pp. 35-45 (in Russian).
27. Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R. [et al.]. Swiss-model: homology modelling of protein structures and complexes. Nucleic Acids Research, 2018, vol. 46, no. W1, pp. W296-W303. https://doi.org/10.1093/nar/gky427
28. Hwang S., Gou Z., Kuznetsov I. B. DP-Bind: a web server for sequence-based prediction of DNA-binding residues in DNA-binding proteins. Bioinformatics, 2007, vol. 23, no. 5, pp. 634-636. https://doi.org/10.1093/bioinformatics/btl672
29. Khrustalev V. V., Ermalovich M. A., Hübschen J. M., Khrustaleva T. A. Transcription-associated mutational pressure in the parvovirus B19 genome: reactivated genomes contribute to the variability of viral populations. Journal of Theoretical Biology, 2017, vol. 435, pp. 199-207. https://doi.org/10.1016/j.jtbi.2017.09.019
30. Khrustalev V. V., Khrustaleva T. A., Poboinev V. V. Amino acid content of beta strands and alpha helices depends on their flanking secondary structure elements. Biosystems, 2018, vol. 168, pp. 45-54. https://doi.org/10.1016/j.biosystems.2018.04.002
31. Musayev F. N., Zarate-Perez F., Bardelli M., Bishop C., Saniev E. F., Linden R. M., Henckaerts E., Escalante C. R. Structural studies of AAV2 Rep68 reveal a partially structured linker and compact domain conformation. Biochemistry, 2015, vol. 54, no. 38, pp. 5907-5919. https://doi.org/10.1021/acs.biochem.5b00610
32. Gros L., Saparbaev M. K., Laval J. Enzymology of the repair of free radicals-induced DNA damage. Oncogene, 2002, vol. 21, no. 58, pp. 8905-8925. https://doi.org/10.1038/sj.onc.1206005
33. Weger S., Wistuba A., Grimm D., Kleinschmidt J. A. Control of adeno-associated virus type 2 cap gene expression: relative influence of helper virus, terminal repeats, and rep proteins. Journal of Virology, 1997, vol. 71, no. 11, pp. 8437-8447. https://doi.org/10.1128/jvi.71.11.8437-8447.1997
34. Weger S., Wendland M., Kleinschmidt J. A., Heilbronn R. The adeno-associated virus type 2 regulatory proteins rep78 and rep68 interact with the transcriptional coactivator PC4. Journal of Virology, 1999, vol. 73, no. 1, pp. 260-269. https://doi.org/10.1128/jvi.73.1.260-269.1999
35. Doerig C., Hirt B., Antonietti J. P., Beard P. Nonstructural protein of parvoviruses B19 and minute virus of mice controls transcription. Journal of Virology, 1990, vol. 64, no. 1, pp. 387-396. https://doi.org/10.1128/jvi.64.1.387-396.1990
36. Raab U., Beckenlehner K., Lowin T., Niller H. H., Doyle S., Modrow S. NS1 protein of parvovirus B19 interacts directly with DNA sequences of the P6 promoter and with the cellular transcription factors Sp1/Sp3. Virology, 2002, vol. 293, no. 1, pp. 86-93. https://doi.org/10.1006/viro.2001.1285