Preview

Proceedings of the National Academy of Sciences of Belarus, Medical series

Advanced search

Accociation between molecular mechanisms of antimicrobial resistance, pnenotypes and serotypes in Streptococcus pneumoniae

https://doi.org/10.29235/1814-6023-2019-16-4-454-467

Abstract

Studies on pneumococcal resistome and molecular antimicrobial resistance mechanisms are relevant and may be used in large-scale epidemiological researches and surveillance of antimicrobial resistance.

A study of antimicrobial molecular resistance in the pneumococcal strains, that were isolated from the patients having the different forms of the pneumococcal infection or carriage, and association of it with phenotypes, clinical and epidemiological features of the strains (serotype, form of the infection).

We studied 546 pneumococcal strains and 5 specimens, that were isolated/obtained from the patients of various age (5 days – 81 years) having the different forms of the pneumococcal infection (meningitis and other invasive forms – 28, pneumonia – 27, acute rhinosinusitis – 18, acute otitis media – 118, conjunctivitis – 26) or carriage (331).

We used multiplex PCR to detect the following molecular pneumococcal antimicrobial resistance determinants – genes mefAermB and mutations in the penicillin-binding proteins: pbp1a (574T→N, 575S→T, 576Q→G and 577F→Y); pbp2b (431T→K, 432Q→L) and pbp2x (338T→A).

Among studied strains 60 % of 551 possess at least one resistance mechanism to macrolides/lincosamides, while 22 % were heteroresistant (mefA + ermB). About 65 % of the strains carry at least one pbp modification, 26 % – two modifications and 24 % – three pbp modifications. 23S RNA methylase (ermB gene) were discovered as a dominating mechanism and was detected in 43 % of genetically resistant strains. Pbp 1a + 2x + 2b and pbp 1a + 2x were more frequent modifications among penicillin genetically resistant pneumococci, while pbp2b genotype was not detected.

About the Authors

A. V. Davydov
Belarusian State Medical University
Belarus

Alexander V. Davydov – Assistant. 

83, Dzerzhinski Ave., 220116, Minsk



L. P. Titov
Republican Scientific and Practical Center for Epidemiology and Microbiology
Belarus

Leonid P. Titov – Corresponding Member, D. Sc. (Med.), Professor, Head of the Laboratory. 

23, Filimonov Str., 220114, Minsk



A. N. Kharkhal
Republican Scientific and Practical Center for Epidemiology and Microbiology
Belarus

Anna N. Kharkhal – Junior researcher. 

23, Filimonov Str., 220114, Minsk



V. G. Baraulya
Minsk City Center for Hygiene and Epidemiology
Belarus

Valentina G. Baraulya – Head of the Department.

13/1, Brovka Str., 220013, Minsk



Y. V. Gusakova
Minsk City Center for Hygiene and Epidemiology
Belarus

Yuliya V. Gusakova – Bacteriologist.

13/1, Brovka Str., 220013, Minsk



References

1. Beloshitskii G. V., Koroleva I. S., Koshkina N. I. Pneumococcal meningitis in Russian Federation. Epidemiologiya i vaktsinoprofilaktika [Epidemiology and vaccine prevention], 2009, no. 2, pp. 21–26 (in Russian).

2. Kim L., McGee L., Tomczyk S., Beall B. Biological and epidemiological features of antibiotic-resistant Streptococcus pneumoniae in preand post-conjugate vaccine eras: a United States perspective. Clinical Microbiology Reviews, 2016, vol. 29, no. 3, pp. 525–552. https://doi.org/10.1128/cmr.00058-15

3. El Moujaber G., Osman M., Rafei R., Dabboussi F., Hamze M. Molecular mechanisms and epidemiology of resistance in Streptococcus pneumoniae in the Middle East region. Journal of Medical Microbiology, 2017, vol. 66, no. 7, pp. 847–858. https://doi.org/10.1099/jmm.0.000503

4. Reinert R. R., Ringelstein A., van der Linden M., Cil M. Y., Al-Lahham A., Schmitz F.-J. Molecular epidemiology of macrolide-resistant Streptococcus pneumoniae isolates in Europe. Journal of Clinical Microbiology, 2005, vol. 43, no. 3, pp. 1294–1300. https://doi.org/10.1128/jcm.43.3.1294-1300.2005

5. Central Asian and Eastern European surveillance of antimicrobial resistance. Annual report 2016. Copenhagen, World Health Organization, 2016. 133 p.

6. Calvez P., Breukink E., Roper D. I., Dib M., Contreras-Martel C., Zapun A. Substitutions in PBP2b from β-lactamresistant Streptococcus pneumoniae have different effects on enzymatic activity and drug reactivity. Journal of Biological Chemistry, 2017, vol. 292, no. 7, pp. 2854–2865. https://doi.org/10.1074/jbc.m116.764696

7. Reinert R. R. The antimicrobial resistance profile of Streptococcus pneumoniae. Clinical Microbiology and Infection, 2009, vol. 15, suppl. 3, pp. 7–11. https://doi.org/10.1111/j.1469-0691.2009.02724.x

8. Chuchalin A. G., Sinopal’nikov A. I., Kozlov R. S., Tyurin I. E., Rachina S. A. Community-acquired pneumonia in adults: practical recommendations on diagnosis, therapy and prophylaxis. Infektsionnye Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious diseases: news, opinions, training], 2013, no. 2 (3), pp. 91–123 (in Russian).

9. Mosleh M. N., Gharibi M., Alikhani M. Y., Saidijam M., Vakhshiteh F. Antimicrobial susceptibility and analysis of macrolide resistance genes in Streptococcus pneumoniae isolated in Hamadan. Iranian Journal of Basic Medical Sciences, 2014, vol. 17, no. 8, pp. 595–599.

10. Srinivasan V., du Plessis M., Beall B. W., McGee L. Quadriplex real-time polymerase chain reaction (lytA, mef, erm, pbp2bwt) for pneumococcal detection and assessment of antibiotic susceptibility. Diagnostic Microbiology and Infectious Disease, 2011, vol. 71, no. 4, pp. 453–456. https://doi.org/10.1016/j.diagmicrobio.2011.08.017

11. Fukushima K. Y., Yanagihara K., Hirakata Y., Sugahara K., Morinaga Y., Kohno S., Kamihira S. Rapid identification of penicillin and macrolide resistance genes and simultaneous quantification of Streptococcus pneumoniae in purulent sputum samples by use of a novel real-time multiplex PCR assay. Journal of Clinical Microbiology, 2008, vol. 46, no. 7, pp. 2384– 2388. https://doi.org/10.1128/jcm.00051-08

12. World Health Organization. Laboratory methods for the diagnosis of meningitis caused by Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae : WHO manual. World Health Organization, Centers for Disease Control and Prevention. Pub. 2. WHO/IVB.11.09, 2011. 311 p.

13. Davydov A. V., Titov L. P., Klyuiko N. L., Gurinovich V. V. Serotype characteristic of Streptococcus pneumoniae strains isolated from children with acute otitis media and sinusitis. Zdravookhranenie [Healthcare], 2016, no. 3, pp. 12–20 (in Russian).

14. Davydov A. V., Titov L. P., Kharkhal’ A. N. The usage of multiplex PCR for serogenotyping the strains of Streptococcus pneumoniae as a part of the monitoring for pneumococcal infection in Belarus. Molekulyarnaya diagnostika 2017: sbornik trudov IX Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem (Moskva, 18–20 aprelya 2017 goda). Tom 2 [Molecular diagnostics 2017: proceedings of the IX All-Russian scientific and practical conference with international participation (Moscow, April 18–20, 2017). Vol. 2]. Moscow, 2017, pp. 336–338 (in Russian).

15. Antimicrobial wild type distributions of microorganisms. EUCAST. Available at: https://mic.eucast.org/Eucast2/SearchController/search.jsp?action=performSearch&BeginIndex=0&Micdif=mic&NumberIndex=50&Antib=1&Specium=12 (accessed 02.12.2017).

16. Clinical and Laboratory Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard. 10th ed. CLSI document M07-A10. Wayne, PA, Clinical and Laboratory Standards Institute, 2015. 94 p.

17. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. CLSI supplement M100. CLSI. Pub. 27th. Wayne, PA, Clinical and Laboratory Standards Institute, 2017. 224 p.

18. Davies T. A., Bush K., Sahm D., Evangelista A. Predominance of 23S rRNA mutants among non-erm, non-mef macrolide-resistant clinical isolates of Streptococcus pneumoniae collected in the United States in 1999–2000. Antimicrobial Agents and Chemotherapy, 2005, vol. 49, no. 7, pp. 3031–3033. https://doi.org/10.1128/aac.49.7.3031-3033.2005

19. Nagai K., Appelbaum P. C., Davies T. A., Kelly L. M., Hoellman D. B., Andrasevic A. T. [et al.]. Susceptibilities to telithromycin and six other agents and prevalence of macrolide resistance due to L4 ribosomal protein mutation among 992 Pneumococci from 10 central and Eastern European countries. Antimicrobial Agents and Chemotherapy, 2002, vol. 46, no. 2, pp. 371–377. https://doi.org/10.1128/aac.46.2.371-377.2002

20. Kargar M., Baghernejad M., Ghorbani D. S. Multi-drug resistance and molecular pattern of erythromycin and penicillin resistance genes in Streptococcus pneumoniae. African Journal of Biotechnology, 2012, vol. 11, no. 4, pp. 968–973. https://doi.org/10.5897/ajb11.2783

21. Schweizer I., Blättner S., Maurer P., Peters K., Vollmer D., Vollmer W., Hakenbeck R., Denapaite D. New aspects of the interplay between penicillin binding proteins, murM, and the two-component system CiaRH of penicillin-resistant Streptococcus pneumoniae serotype 19A isolates from Hungary. Antimicrobial Agents and Chemotherapy, 2017, vol. 61, no. 7, pp. e00414–e00417. https://doi.org/10.1128/aac.00414-17

22. Central Asian and Eastern European surveillance of antimicrobial resistance. Annual report 2017. Copenhagen, World Health Organization, 2018. 135 p.

23. Mayanskiy N., Alyabieva N., Ponomarenko O., Lazareva A., Katosova L., Ivanenko A., Kulichenko T., NamazovaBaranova L., Baranov A. Serotypes and antibiotic resistance of non-invasive Streptococcus pneumoniae circulating in pediatric hospitals in Moscow, Russia. International Journal of Infectious Diseases, 2014, vol. 20, pp. 58–62. https://doi.org/10.1016/j.ijid.2013.11.005

24. Davydov A. V., Titov L. P., Kharkhal’ A. N., Klyuiko N. L., Baraulya V. G., Rogacheva T. A. Antibiotic susceptibility of Streptococcus pneumoniae strains isolated from patients with meningitis in Belarus. Zdravookhranenie [Healthcare], 2018, no. 1, pp. 22–32 (in Russian).

25. Davydov A. V., Titov L. P., Klyuiko N. L., Levshina N. N., Kharkhal’ A. N., Madzharova O. A., Belanovskaya L. I. Antibiotic susceptibility of Streptococcus pneumoniae strains isolated from patients with pneumonia in Belarus]. Meditsinskie novosti [Medical news], 2017, no. 12, pp. 74–82 (in Russian).

26. Davydov A. V. Titov L. P., Klyuiko N. L., Gurinovich V. V., Lazarev A. V. Antimicrobial susceptibility and association with serotypes of Streptococcus pneumoniae isolates in children with acute otitis media and acute sinusitis in Belarus. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya [Clinical microbiology and antimicrobial chemotherapy], 2018, vol. 20, no. 3 (in Russian).

27. Marzouk M., Ferjani A., Amamou S., Alibi S., Haj Ali M., Boukadida J. Phenotype, genotype, and serotype distribution of macrolide resistant invasive and non-invasive Streptococcus pneumoniae strains, in Sousse, Tunisia. Médecine et Maladies Infectieuses, 2014, vol. 44, no. 10, pp. 478–482. https://doi.org/10.1016/j.medmal.2014.07.016

28. Reinert R. R., van der Linden M., Seegmüller I., Al-Lahham A., Siedler A., Weißmann B., Toschke A. M., von Kries R. Molecular epidemiology of penicillin-non-susceptible Streptococcus pneumoniae isolates from children with invasive pneumococcal disease in Germany. Clinical Microbiology and Infection, 2007, vol. 13, no. 4, pp. 363–368. https://doi.org/10.1111/j.1469-0691.2006.01676.x


Review

For citations:


Davydov A.V., Titov L.P., Kharkhal A.N., Baraulya V.G., Gusakova Y.V. Accociation between molecular mechanisms of antimicrobial resistance, pnenotypes and serotypes in Streptococcus pneumoniae. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2019;16(4):454-467. (In Russ.) https://doi.org/10.29235/1814-6023-2019-16-4-454-467

Views: 770


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)