Somatic and behavioral reactions in rats under the modeling of the stress of “deficiency of time”
https://doi.org/10.29235/1814-6023-2019-16-3-298-306
Abstract
In experiments on 60 white outbred male rats, the effect of the stress of “deficiency of time” on somatic (relative masses of the adrenal glands, thymus and spleen, gastric mucosa, consentrations of corticosteroids and insulin in the blood) and behavioral (vertical and horizontal motor activity) indicators of stress-reactions, physical endurance of animals, thyroid function (serum concentration of total and free fractions of triiodothyronine and thyroxine, thyrotropic hormone) is considered.
As a result of the study, it was found that the stress of “deficiency of time” causes an increase in the relative mass of the adrenal glands (by 31 %), a decrease in relative masses of the thymus and spleen (by 26 and 14 %), damage to the gastric mucosa (in 80 % rats with a severity 1 point in 20 % rats, 2 or 3 points in the remaining 60 % in the 1:1 ratio; a multiplicity of 2 hemorrhages per animal in 30 %, 3 in 40 % and 4 in 10 % rats, damage index is 4.7), changes in the serum concentration of corticosteroids (increase by 43 %) and insulin (decrease by 19 %) and leads to the activation of thyroid function (age concentration of total and free triiodothyronine and thyroxin increased by 18–32 %). Under the stress of “deficiency of time”, the horizontal locomotor activity and the physical endurance of animals increase, while their vertical locomotor and exploratory activity decreases. The proposed model allows studying the mechanisms of development of stress damage in order to develop new ways to limit the negative effects of emotional stress on human health.
About the Authors
E. A. GusakovaBelarus
Elena A. Gusakova – Ph. D. (Biol.), Assistant Professor
27, Frunze Ave., 210023, Vitebsk
I. V. Gorodetskaya
Belarus
Irina V. Gorodetskaya – D. Sc. (Med.), Professor, Dean of the Faculty
27, Frunze Ave., 210023, Vitebsk
References
1. Kodaneva L. N., Shulyat’ev V. M., Razmakhova S. Yu., Pushkina V. N. Health status and lifestyle of medical students. Mezhdunarodnyi nauchno-issledovatel’skii zhurnal = International Research Journal, 2016, vol. 54, no. 12, pt. 4, pp. 45–47 (in Russian).
2. Gorodetskaya I. V., Gusakova E. A., Device for modeling emotional stress in an experimental animal. Patent BY, no. 11571, 2017 (in Russian).
3. Selye H. The Story of the adaption syndrome. Montreal, Medical Publishers, 1952. 225 p. (Russ. ed.: Sel’e G. Essays on adaptation syndrome. Moscow, Medgiz Publ., 1960. 254 р.).
4. Volozhin A. I., Tarasenko L. M., Neporada K. S., Skrypnik I. N. Experimental model of peptic ulcers of the stomach. Patologicheskaya fiziologiya i eksperimental’naya terapiya = Pathological physiology and experimental therapy, 2001, no. 4, pp. 27–28 (in Russian).
5. Vinogradov V. A., Polonskii V. M. The effect of neuropeptides on experimental duodenal ulcer in rats. Patologicheskaya fiziologiya i eksperimental’naya terapiya = Pathological physiology and experimental therapy, 1983, no. 1, pp. 3–7 (in Russian).
6. Panin L. E. Biochemical mechanisms of stress. Novosibirsk, Nauka (Sibirskoe otdelenie) Publ., 1983. 233 p. (in Russian).
7. Belyakova E. I. Reaction of the hypothalamic-pituitary-thyroid system to an acute and prolonged stress effect. Uspekhi sovremennogo estestvoznaniya = Advances in current natural sciences, 2004, no. 8, pp. 33–34 (in Russian).
8. Franco A. J., Chen C., Scullen T., Zsombok A., Salahudeen A. A., Di S., Herman J. P., Tasker J. G. Sensitization of the hypothalamic-pituitary-adrenal axis in a male rat chronic stress model. Endocrinology, 2016, vol. 157, no. 6, pp. 2346–2355. https://doi.org/10.1210/en.2015-1641
9. Shigemitsu Y., Wada S., Suzuki M., Minagawa A., Kitahama S., Iitaka M., Katayama S. Isolated adrenocorticotropic hormone (ACTH) deficiency and thyroid-stimulating hormone (TSH)-thyroid hormone derangement: report of three cases. Journal of Saitama Medical School, 2004, vol. 31, pp. 115–120.
10. Wang L., Liu F., Luo Y., Zhu L., Li G. Effect of acute heat stress on adrenocorticotropic hormone, cortisol, interleukin-2, interleukin-12 and apoptosis gene expression in rats. Biomedical Reports, 2015, vol. 3, no. 3, pp. 425–429. https://doi.org/10.3892/br.2015.445
11. Starskaya I. S., Polevshchikov A. V. Morphological aspects of thymus atrophy under stress. Immunologiya = Immunology, 2013, no. 5, pp. 271–277 (in Russian).
12. Barth E., Albuszies G., Baumgart K., Matejovic M., Wachter U., Vogt J., Radermacher P., Calzia E. Glucose metabolism and catecholamines. Critical Care Medicine, 2007, vol. 35, suppl. 9, pp. S508–S518. https://doi.org/10.1097/01.CCM.0000278047.06965.20
13. Prokhorenko I. O. Stress hormones. Psychophysiological correlationsat patients of senior age groups. Sovremennye problemy nauki i obrazovaniya = Modern problems of science and education, 2013, no. 2, pp. 1–8 (in Russian).
14. Nikol’skii V. I., Sergatskii K. I. Etiology and pathogenesis of acute gastroduodenal ulcerations complicated by bleed- ing. Vestnik khirurgicheskoi gastroenterologii = Herald of surgical gastroenterology, 2009, no. 4, pp. 53–63 (in Russian).
15. Antalis T. M., Shea-Donohue T., Vogel S. N., Sears C., Fasano A. Mechanisms of disease: protease functions in intestinal mucosal pathobiology. Nature Clinical Practice Gastroenterology and Hepatology, 2007, vol. 4, no. 7, pp. 393–402. https://doi.org/10.1038/ncpgasthep0846
16. Kwiecien S., Jasnos K., Magierowski M., Sliwowski Z., Pajdo R., Brzozowski B., Mach T., Wojcik D., Brzozowski T. Lipid peroxidation, reactive oxygen species and antioxidative factors in the pathogenesis of gastric mucosal lesions and mechanism of protection against oxidative stress – induced gastric injury. Journal of Physiology and Pharmacology, 2014, vol. 65, no. 5, pp. 613–622.
17. Kuo T., McQueen A., Chen T.-C., Wang J.-C. Regulation of glucose homeostasis by glucocorticoids. Glucocorticoid Signaling. Advances in Experimental Medicine and Biology. New York, 2015, vol. 872, pp. 99–126.
18. Grishin S. N., Gabdrakhmanov A. I., Khairullin A. E., Ziganshin A. U. The influence of glucocorticoids and catecholamines on the neuromuscular transmission. Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology, 2017, vol. 11, no. 4, pp. 253–260. https://doi.org/10.1134/s1990747817040043
19. Duclos M., Gouarne C., Martin C, Rocher C., Mormède P, Letellier T. Effects of corticosterone on muscle mitochondria identifying different sensitivity to glucocorticoids in Lewis and Fischer rats. American Journal of Physiology-Endocrinology and Metabolism, 2004, vol. 286, no. 2, pp. E159–E167. https://doi.org/10.1152/ajpendo.00281.2003
20. Xu C., He J., Jiang H., Zu L., Zhai W., Pu S., Xu G. Direct effect of glucocorticoids on lipolysis in adipocytes. Molecular Endocrinology, 2009, vol. 23, no. 8, pp. 1161–1170. https://doi.org/10.1210/me.2008-0464
21. Grabacka M., Pierzchalska M., Dean M., Reiss K. Regulation of ketone body metabolism and the role of PPARα. International Journal of Molecular Sciences, 2016, vol. 17, no. 12, p. 2093. https://doi.org/10.3390/ijms17122093
22. Mikhailov S. S. Biochemistry of motor activity. Moscow, Sport Publ., 2018. 298 p. (in Russian).
23. Medvedev I. O., Ramsey A. J., Masoud S. T., Bermejo M. K., Urs N., Sotnikova T. D., Beaulieu J.-M., Gainetdinov R. R., Salahpour A. D1 dopamine receptor coupling to PLCβ regulates forward locomotion in mice. Journal of Neuroscience, 2013, vol. 33, no. 46, pp. 18125–18133. https://doi.org/10.1523/jneurosci.2382-13.2013
Review
For citations:
Gusakova E.A., Gorodetskaya I.V. Somatic and behavioral reactions in rats under the modeling of the stress of “deficiency of time”. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2019;16(3):298-306. (In Russ.) https://doi.org/10.29235/1814-6023-2019-16-3-298-306