Preview

Proceedings of the National Academy of Sciences of Belarus, Medical series

Advanced search

Role of peroxisome proliferator-activated receptors in the control of alcohol dependence and concomitant liver pathology

https://doi.org/10.29235/1814-6023-2019-16-2-244-256

Abstract

The article is aimed to summarize the scattered data on the role of peroxisome proliferator-activated receptors (PPAR) and the possibility of using PPAR’s agonists for treatment of alcohol dependence and alcoholic liver disease. Earlier it was shown that some PPAR agonists can reduce ethanol consumption and preference in rodents. Several hypotheses considering the antialcoholic activity of PPAR agonists and the roles of PPAR in the development of alcohol dependence were discussed. In light of these data, the therapeutic potential of PPARs agonists as an agent for the treatment of alcoholism, has been reviewed.

About the Authors

I. N. Semenenya
Institute of Biochemistry of Biologically Active Compounds of the National Academy of Sciences of Belarus
Belarus

Igor N. Semenenya – D. Sc. (Med.), Professor, Director

50, BLK, 230030, Grodno



A. H. Shlyahtun
Institute of Biochemistry of Biologically Active Compounds of the National Academy of Sciences of Belarus
Belarus

Alexej H. Shlyahtun – Head of the Laboratory

50, BLK, 230030, Grodno



H. F. Raduta
Institute of Biochemistry of Biologically Active Compounds of the National Academy of Sciences of Belarus
Belarus

Helena F. Raduta – Senior researcher

50, BLK, 230030, Grodno



References

1. Miller P. M., Book S. W., Stewart S. H. Medical treatment of alcohol dependence: a systematic review. International Journal of Psychiatry, 2011, vol. 42, no. 3, pp. 227–266. https://doi.org/10.2190/PM.42.3.b

2. Dreyer C., Krey G., Keller H., Givel F., Helftenbein G., Wahli W. Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors. Cell, 1992, vol. 68, no. 5, pp. 879–887. https://doi.org/10.1016/0092-8674(92)90031-7

3. Issemann I., Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature, 1990, vol. 347, no. 6294, pp. 645–650. https://doi.org/10.1038/347645a0

4. Kliewer S. A., Forman B. M., Blumberg B., Ong E. S., Borgmeyer U., Mangelsdorf D. J., Umesono K., Evans R. M. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proceedings of the National Academy of Sciences, 1994, vol. 91, no. 15, pp. 7355–7359. https://doi.org/10.1073/pnas.91.15.7355

5. Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications – a review. Nutrition Journal, 2014, vol. 13, аrt. 17. https://doi.org/10.1186/1475-2891-13-17

6. Becker J., Delayre-Orthez C., Frossard N., Pons F. Regulation of peroxisome proliferator-activated receptor-alpha expression during lung inflammation. Pulmonary Pharmacology and Therapeutics, 2008, vol. 21, no. 2, pp. 324–330. https://doi.org/10.1016/j.pupt.2007.08.001

7. Mueller E., Drori S., Aiyer A., Yie J., Sarraf P., Chen H. [et al.]. Genetic analysis of adipogenesis through peroxisome proliferator-activated receptor gamma isoforms. Journal of Biological Chemistry, 2002, vol. 277, no. 44, pp. 41925–41930. https://doi.org/10.1074/jbc.M206950200

8. Brunmeir R., Xu F. Functional regulation of PPARs through post-translational modifcations. International Journal of Molecular Sciences, 2018, vol. 19, no. 6, аrt. 1738. https://doi.org/10.3390/ijms19061738

9. Rochette-Egly C. Nuclear receptors: integration of multiple signalling pathways through phosphorylation. Cellular Signalling, 2003, vol. 15, no. 4, pp. 355–366. https://doi.org/10.1016/S0898-6568(02)00115-8

10. Zoete V., Grosdidier A., Michielin O. Peroxisome proliferator-activated receptor structures: ligand specifcity, molecular switch and interactions with regulators. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2007, vol. 1771, no. 8, pp. 915–925. https://doi.org/10.1016/j.bbalip.2007.01.007

11. Sonoda J., Pei L., Evans R. M. Nuclear receptors: decoding metabolic disease. FEBS Letters, 2008, vol. 582, no. 1, pp. 2–9. https://doi.org/10.1016/j.febslet.2007.11.016

12. Xu H. E., Lambert M. H., Montana V. G., Parks D. J., Blanchard S. G., Brown P. J. [et al.]. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Molecular Cell, 1999, vol. 3, no. 3, pp. 397–403. https://doi.org/10.1016/S1097-2765(00)80467-0

13. Krey G., Braissant O., L’Horset F., Kalkhoven E., Perroud M., Parker M. G., Wahli W. Fatty acids, eicosanoids, and hypolipidemic agents identifed as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Molecular Endocrinology, 1997, vol. 11, no. 6, pp. 779–791. https://doi.org/10.1210/mend.11.6.0007

14. Watt M. J., Southgate R. J., Holmes A. G., Febbraio M. A. Suppression of plasma free fatty acids upregulates peroxisome proliferator-activated receptor (PPAR) alpha and delta and PPAR coactivator 1 alpha in human skeletal muscle, but not lipid regulatory genes. Journal of Molecular Endocrinology, 2004, vol. 33, no. 2, pp. 533–544. https://doi.org/10.1677/jme.1.01499

15. Siersbaek R., Nielsen R., Mandrup S. PPARgamma in adipocyte differentiation and metabolism – novel insights from genome-wide studies. FEBS Letters, 2010, vol. 584, no. 15, pp. 3242–3249. https://doi.org/10.1016/j.febslet.2010.06.010

16. Braissant O., Foufelle F., Scotto C., Dauça M., Wahli W. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology, 1996, vol. 137, no. 1, pp. 354–366. https://doi.org/10.1210/endo.137.1.8536636

17. Lefebvre P., Chinetti G., Fruchart J.-Ch., Staels B. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. Journal of Clinical Investigation, 2006, vol. 116, no. 3, pp. 571–580. https://doi.org/10.1172/JCI27989

18. Staels B., Dallongeville J., Auwerx J., Schoonjans K., Leitersdorf E., Fruchart J.-Ch. Mechanism of action of fbrates on lipid and lipoprotein metabolism. Circulation, 1998, vol. 98, no. 19, pp. 2088–2093. https://doi.org/10.1161/01.cir.98.19.2088

19. Kersten S., Mandard S., Escher P., Gonzalez F. J., Tafuri S., Desvergne B., Wahli W. The peroxisome proliferator-activated receptor alpha regulates amino acid metabolism. FASEB Journal, 2001, vol. 15, no. 11, pp. 1971–1978. https://doi.org/10.1096/fj.01-0147com

20. Yang Y., Gocke A. R., Lovett-Racke A., Drew P. D., Racke M. K. PPAR alpha regulation of the immune response and autoimmune encephalomyelitis. PPAR Research, 2008, vol. 2008, art. ID 546753. https://doi.org/10.1155/2008/546753

21. Sun Y., Alexander S. P. H., Kendall D. A., Bennett A. J. Cannabinoids and PPARalpha signaling. Biochemical Society Transactions, 2006, vol. 34, no. 6, pp. 1095–1097. https://doi.org/10.1042/BST0341095

22. Pandey N. R., Renwick J., Misquith A., Sokoll K., Sparks D. L. Linoleic acid-enriched phospholipids act through peroxisome proliferator-activated receptors alpha to stimulate hepatic apolipoprotein A-I secretion. Biochemistry, 2008, vol. 47, no. 6, pp. 1579–1587. https://doi.org/10.1021/bi702148f

23. Fajas L., Auboeuf D., Raspé E., Schoonjans K., Lefebvre A.-M., Saladin R. [et al.]. The organization, promoter analysis, and expression of the human PPARgamma gene. Journal of Biological Chemistry, 1997, vol. 272, no. 30, pp. 18779–18789. https://doi.org/10.1074/jbc.272.30.18779

24. Han T., Lv Y., Wang S., Hu T., Hong H., Fu Z. PPARγ overexpression regulates cholesterol metabolism in human L02 hepatocytes. Journal of Pharmacological Sciences, 2019, vol. 139, no. 1, pp. 1–8. https://doi.org/10.1016/j.jphs.2018.09.013

25. Wang S., Dougherty E. J., Danner R. L. PPARγ signaling and emerging opportunities for improved therapeutics. Pharmacological Research, 2016, vol. 111, pp. 76–85. https://doi.org/10.1016/j.phrs.2016.02.028

26. Nedergaard J., Petrovic N., Lindgren E. M., Jacobsson A., Cannon B. PPARgamma in the control of brown adipocyte differentiation. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 2005, vol. 1740, no. 2, pp. 293–304. https://doi.org/10.1016/j.bbadis.2005.02.003

27. Barson J. R., Karatayev O., Chang G.-Q., Johnson D. F., Bocarsly M. E., Hoebel B. G., Leibowitz S. F. Positive relationship between dietary fat, ethanol intake, triglycerides, and hypothalamic peptides: counteraction by lipid-lowering drugs. Alcohol, 2009, vol. 43, no. 6, pp. 433–441 https://doi.org/10.1016/j.alcohol.2009.07.003

28. Stopponi S., Somaini L., Cippitelli A., Cannella N., Braconi S., Kallupi M. [et al.]. Activation of nuclear PPARγ receptors by the antidiabetic agent pioglitazone suppresses alcohol drinking and relapse to alcohol seeking. Biological Psychiatry, 2011, vol. 69, no. 7, pp. 642–649. https://doi.org/10.1016/j.biopsych.2010.12.010

29. Stopponi S., de Guglielmo G., Somaini L., Cippitelli A., Cannella N., Kallupi M. [et al.]. Activation of PPARγ by pioglitazone potentiates the effects of naltrexone on alcohol drinking and relapse in msP rats. Alcoholism: Clinical and Experimental Research, 2013, vol. 37, no. 8, pp. 1351–1360. https://doi.org/10.1111/acer.12091

30. Sorge R. E., Mapplebeck J. C. S., Rosen S., Beggs S., Taves S., Alexander J. K. [et al.]. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nature Neuroscience, 2015, vol. 18, no. 8, pp. 1081–1083. https://doi.org/10.1038/nn.4053

31. Blednov Y. A., Benavidez J. M., Black M., Ferguson L. B., Schoenhard G. L., Goate A. M. [et al.]. Peroxisome proliferator-activated receptors α and γ are linked with alcohol consumption in mice and withdrawal and dependence in humans. Alcoholism: Clinical and Experimental Research, 2015, vol. 39, no. 1, pp. 136–145. https://doi.org/10.1111/acer.12610

32. Blednov Y. A., Black M., Benavidez J. M., Stamatakis E. E., Harris R. A. PPAR agonists: I. Role of receptor subunits in alcohol consumption in male and female mice. Alcoholism: Clinical and Experimental Research, 2016, vol. 40, no. 3, pp. 553–562. https://doi.org/10.1111/acer.12976

33. Blednov Y. A., Black M., Benavidez J. M., Stamatakis E. E., Harris R. A. PPAR agonists: II. Fenofbrate and tesaglitazar alter behaviors related to voluntary alcohol consumption. Alcoholism: Clinical and Experimental Research, 2016, vol. 40, no. 3, pp. 563–571. https://doi.org/10.1111/acer.12972

34. Karahanian E., Quintanilla M. E., Fernandez K., Israel Y. Fenofbrate – a lipid-lowering drug – reduces voluntary alcohol drinking in rats. Alcohol, 2014, vol. 48, no. 7, pp. 665–670. https://doi.org/10.1016/j.alcohol.2014.08.004

35. Bardina L. R., Pron’ko P. S., Satanovskaya V. I., Alieva E. V. Effects of catalase activators and inhibitors on ethanol pharmacokinetics and the activity of enzymes involved in metabolism of ethanol and acetaldehyde in the liver and brain of rats. Biomeditsinskaya khimiya [Biomedical chemistry], 2010, vol. 56, no. 4, pp. 499–505 (in Russian).

36. Ferguson L. B., Most D., Blednov Y. A., Harris R. A. PPAR agonists regulate brain gene expression: Relationship to their effects on ethanol consumption. Neuropharmacology, 2014, vol. 86, pp. 397–407 https://doi.org/10.1016/j.neuropharm.2014.06.024

37. Shlyakhtun A. G., Buben A. L., Loban’ Yu. V., Satanovskaya V. I., Pron’ko P. S. New pharmacological approaches in the treatment of alcohol dependence: PPAR receptor agonists. Sovremennye problemy biokhimii i molekulyarnoi biologii: sbornik nauchnykh statei (Grodno, 17–18 maya 2018 goda) [Modern problems of biochemistry and molecular biology: a collection of scientifc articles (Grodno, May 17–18, 2018)]. Minsk, 2018, pp. 730–735 (in Russian).

38. Kelley K. W., Dantzer R. Alcoholism and inflammation: neuroimmunology of behavioral and mood disorders. Brain, Behavior, and Immunity, 2011, vol. 25, suppl. 1, pp. S13–S20. https://doi.org/10.1016/j.bbi.2010.12.013

39. Blanquart C., Barbier O., Fruchart J. Ch., Staels B., Glineur C. Peroxisome proliferator-activated receptors: regulation of transcriptional activities and roles in inflammation. Journal of Steroid Biochemistry and Molecular Biology, 2003, vol. 85, no. 2–5, pp. 267–273. https://doi.org/10.1016/S0960-0760(03)00214-0

40. Aleshin S., Grabeklis S., Hanck T., Sergeeva M., Reiser G. Peroxisome proliferator-activated receptor (PPAR)- gamma positively controls and PPARalpha negatively controls cyclooxygenase-2 expression in rat brain astrocytes through a convergence on PPARbeta/delta via mutual control of PPAR expression levels. Molecular Pharmacology, 2009, vol. 76, no. 2, pp. 414–424. https://doi.org/10.1124/mol.109.056010

41. Nan Y.-M., Wang R.-Q., Fu N. Peroxisome proliferator-activated receptor α, a potential therapeutic target for alcoholic liver disease. World Journal of Gastroenterology, 2014, vol. 20, no. 25, pp. 8055–8060. https://doi.org/10.3748/wjg.v20.i25.8055

42. Kong L., Ren W., Li W., Zhao S., Mi H., Wang R., Zhang Y., Wu W., Nan Y., Yu J. Activation of peroxisome proliferator activated receptor alpha ameliorates ethanol induced steatohepatitis in mice. Lipids in Health and Diseases, 2011, vol. 10, art. 246. https://doi.org/10.1186/1476-511X-10-246

43. Wu C., Gilroy R., Taylor R., Olyaee M., Abdulkarim B., Forster J., O’Neil M., Damjanov I., Wan Y.-J. Y. Alteration of hepatic nuclear receptor- mediated signaling pathways in hepatitis C virus patients with and without a history of alcohol drinking. Hepatology, 2011, vol. 54, no. 6, pp. 1966–1974. https://doi.org/10.1002/hep.24645

44. Zhang W., Sun Q., Zhong W., Sun X., Zhou Z. Hepatic peroxisome proliferator-activated receptor gamma signaling contributes to alcohol-induced hepatic steatosis and inflammation in mice. Alcoholism: Clinical and Experimental Research, 2016, vol. 40, no. 5, pp. 988–999. https://doi.org/10.1111/acer.13049

45. Liu S., Wu H.-J., Zhang Z.-Q., Chen Q., Liu B., Wu J.-P., Zhu L. The ameliorating effect of rosiglitazone on experimental nonalcoholic steatohepatitis is associated with regulating adiponectin receptor expression in rats. European Journal of Pharmacology, 2011, vol. 650, no. 1, pp. 384–389. https://doi.org/10.1016/j.ejphar.2010.09.082

46. Zhang F., Lu Y., Zheng S. Peroxisome proliferator-activated receptor-γ cross-regulation of signaling events implicated in liver fbrogenesis. Cellular Signalling, 2012, vol. 24, no. 3, pp. 596–605. https://doi.org/10.1016/j.cellsig.2011.11.008

47. Pang M., de la Monte S. M., L. Longato, M. Tong, He J., Chaudhry R., Duan K., Ouh J., Wands J. R. PPARδ agonist attenuates alcohol-induced hepatic insulin resistance and improves liver injury and repair. Journal of Hepatology, 2009, vol. 50, no. 6, pp. 1192–1201. https://doi.org/10.1016/j.jhep.2009.01.021

48. Khoo N. K. H., Hebbar S., Zhao W., Moore S. A., Domann F. E., Robbins M. E. Differential activation of catalase expression and activity by PPAR agonists: implications for astrocyte protection in anti-glioma therapy. Redox Biology, 2013, vol. 1, no. 1, pp. 70–79. https://doi.org/10.1016/j.redox.2012.12.006

49. Liu X., Jang S. S., An Z., Song H., Kim W.-D., Yu J.-R., Park W.-Y. Fenofbrate decreases radiation sensitivity

50. via peroxisome proliferator-activated receptor α-mediated superoxide dismutase induction in HeLa cells. Radiation

51. Oncology Journal, 2012, vol. 30, no. 2, pp. 88–95. https://doi.org/10.3857/roj.2012.30.2.88


Review

For citations:


Semenenya I.N., Shlyahtun A.H., Raduta H.F. Role of peroxisome proliferator-activated receptors in the control of alcohol dependence and concomitant liver pathology. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2019;16(2):244-256. (In Russ.) https://doi.org/10.29235/1814-6023-2019-16-2-244-256

Views: 695


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)