Histological changes in the spleen of rats under the influence of prednisolone and its combination with vitamin D
https://doi.org/10.29235/1814-6023-2019-16-2-166-174
Abstract
The possibility of using vitamin D to normalize the histological structure of the spleen changed under the influence of prednisolone in rats was studied. The animals were subjected to the intragastric administration of saline and either prednisolone (5 mg/kg b. w.) or its combination with vitamin D (800 IU/kg) daily for 3 weeks. The results of morphometric analysis of spleen slices reveal that the administration of prednisolone leads to a significant decrease in spleen sizes, white pulp volume, and in sizes of germinal centers of lymphatic follicles within the white pulp, and to an increase in the number of megakaryocytes in the red pulp. Vitamin D alleviates histological changes due to the prednisolone treatment, in particular the substantial restoration in sizes of germinal centers in the spleen has been found. The data obtained suggest the benefits of further studies of possible mechanisms of vitamin D to normalize immunological and hematopoietic functions in subjects subjected to glucocorticoid treatment.
Keywords
About the Authors
A. A. AstrowskiBelarus
Alexander A. Astrowski – D. Sc. (Med.), Professor, Leading researcher
50, BLK, 230030, Grodno
Yu. Z. Maksimchyk
Belarus
Yury Z. Maksimchyk – Researcher
50, BLK, 230030, Grodno
V. A. Gurinovich
Belarus
Valery A. Gurynovich – Ph. D. (Biol.), Leading researcher
50, BLK, 230030, Grodno
A. B. Astrowskaja
Belarus
Aksana B. Astrowskaja – Ph. D. (Biol.), Senior researcher
80, Gorky Str., 230009, Grodno
A. G. Moiseenok
Belarus
Andrey G. Moiseenok – Correspondent Member, D. Sc. (Biol.), Professor, Head of the Department
50, BLK, 230030, Grodno
References
1. Godschalk M., Levy J. R., Downs R. W. Glucocorticoids decrease vitamin D receptor number and gene expression in human osteosarcoma cells. Journal of Bone and Mineral Research, 1992, vol. 7, no. 1, pp. 21–27. https://doi.org/10.1002/jbmr.5650070105
2. Hidalgo A. A., Trump D. L., Johnson C. S. Glucocorticoid regulation of the vitamin D receptor. Journal of Steroid Biochemistry and Molecular Biology, 2010, vol. 121, no. 1–2, pp. 372–375. https://doi.org/10.1016/j.jsbmb.2010.03.081
3. Dhawan P., Christakos S. Novel regulation of 25-hydroxyvitamin D3 24-hydroxylase (24(OH)ase) transcription by glucocorticoids: cooperative effects of the glucocorticoid receptor, C/EBP beta, and the Vitamin D receptor in 24(OH)ase transcription. Journal of Cellular Biochemistry, 2010, vol. 110, no. 6, pp. 1314–1323. https://doi.org/10.1002/jcb.22645
4. Kassi E., Nasiri-Ansari N., Papavassiliou A. G. Vitamin D affects glucocorticoid action in target cells. Oncotarget, 2017, vol. 8, no. 5, pp. 7220–7221. https://doi.org/10.18632/oncotarget.13997
5. Moore K. L., Dalle A. F. Clinically Oriented Anatomy. 5th ed. Philadelphia, Lippincott Williams & Wilkins, 2005. 1029 p.
6. Cumano A., Godin I. Ontogeny of the hematopoietic system. Annual Review of Immunology, 2007, vol. 25, no. 1, pp. 745–785. https://doi.org/10.1146/annurev.immunol.25.022106.141538
7. Steiniger B. S. Human spleen microanatomy: why mice do not sufce. Immunology, 2015, vol. 145, no. 3, pp. 334–346. https://doi.org/10.1111/imm.12469
8. Iqbal M. P., Mehboobali N., Haider G., Pervez S., Azam I. Effects of betel nut on cardiovascular risk factors in a rat model. BMC Cardiovascular Disorders, 2012, vol. 12, art. 94. https://doi.org/10.1186/1471-2261-12-94
9. Marien G. J., McFadden K. D. Splenic megakaryocytes and circulating platelets in pregnant rats. American Journal of Anatomy, 1970, vol. 128, no. 2, pp. 225–233. https://doi.org/10.1002/aja.1001280207
10. Eldor A., Vlodavsky I., Deutsch V., Levine R. F. Megakaryocyte function and dysfunction. Baillière’s Clinical Haematology, 1989, vol. 2, no. 3, pp. 543–568. https://doi.org/10.1016/S0950-3536(89)80033-2
11. Davoine F., Lacy P. Eosinophil cytokines, chemokines, and growth factors: emerging roles in immunity. Frontiers in Immunology, 2014, vol. 5, art. 570. https://doi.org/10.3389/fmmu.2014.00570
12. Noel J. G., Wells D. A., Guo X., Kong F., Lovell G. J., Ogle C. K. Thermal injury increases the number of eosinophil progenitors in rat spleen and bone marrow. Inflammation, 2001, vol. 25, no. 5, pp. 339–349.
13. Bro-Rasmussen F. Effect of cortisol on the eosinophils in the rat spleen. Autoradiographic studies. Scandinavian Journal of Haematology, 1973, vol. 11, no. 1, pp. 59–70. https://doi.org/10.1111/j.1600-0609.1973.tb00096.x
14. Shephard R. J. Responses of the human spleen to exercise. Journal of Sports Sciences, 2016, vol. 34, no. 10, pp. 929–936. https://doi.org/10.1080/02640414.2015.1078488
15. Reeves J. D., Huffer W. E., August C. S., Hathaway W. E., Koerper M., Walters C. E. The hematopoietic effects of prednisone therapy in four infants with osteopetrosis. Journal of Pediatrics, 1979, vol. 94, no. 2, pp. 210–214. https://doi.org/10.1016/s0022-3476(79)80825-2
16. Yan S.-X., Deng X.-M., Wang Q.-T., Sun X.-J., Wei W. Prednisone treatment inhibits the differentiation of B lymphocytes into plasma cells in MRL/MpSlac-lpr mice. Acta Pharmacologica Sinica, 2015, vol. 36, no. 11, pp. 1367–1376. https://doi.org/10.1038/aps.2015.76
17. Bobrysheva I. V. Morphological reactivity of rat spleen during different ages at immunostimulation. Zhurnal klіnіchnikh ta eksperimental’nikh medichnikh doslіdzhen’ = Journal of Clinical and Experimental Medical Research, 2013, vol. 1, no. 3, pp. 315–320 (in Russian).
18. Kashchenko S. A., Bobrysheva I. V. Features of histological structure in the white pulp of rat spleen during different periods of postnatal ontogenesis under experimental immunosuppression. Zhurnal Grodnenskogo gosudarstvennogo meditsinskogo universiteta = Journal of Grodno State Medical University, 2014, no. 1, pp. 51–54 (in Russian).
19. Hogquist K. A., Baldwin T. A., Jameson S. C. Central tolerance: learning self-control in the thymus. Nature Reviews Immunology, 2005, vol. 5, no. 10, pp. 772–782. https://doi.org/10.1038/nri1707
20. Gordon M. S., Hoffman R. Growth factors affecting human thrombocytopoiesis: potential agents for the treatment of thrombocytopenia. Blood, 1992, vol. 80, no. 2, pp. 302–307.
21. Lordier L., Pan J., Naim V., Jalil A., Badirou I., Rameau P., Larghero J., Debili N., Rosselli F., Vainchenker W., Chang Y. Presence of a defect in karyokinesis during megakaryocyte endomitosis. Cell Cycle, 2012, vol. 11, no. 23, pp. 4385–4389. https://doi.org/10.4161/cc.22712
22. Anastasi J. Some observations on the geometry of megakaryocyte mitotic fgures: Buckyballs in the bone marrow. Blood, 2011, vol. 118, no. 24, pp. 6473–6474. https://doi.org/10.1182/blood-2011-08-374074
23. Lisse T. S., Hewison M. Vitamin D. A new player in the world of mTOR signaling. Cell Cycle, 2011, vol. 10, no. 12, pp. 1888–1889. https://doi.org/10.4161/cc.10.12.15620
Review
For citations:
Astrowski A.A., Maksimchyk Yu.Z., Gurinovich V.A., Astrowskaja A.B., Moiseenok A.G. Histological changes in the spleen of rats under the influence of prednisolone and its combination with vitamin D. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2019;16(2):166-174. (In Bel.) https://doi.org/10.29235/1814-6023-2019-16-2-166-174