Correction of the disorders of the cerebral water metabolism
https://doi.org/10.29235/1814-6023-2019-16-1-99-107
Abstract
The new information, that has become available at present, makes it possible to outline a mechanism of brain water metabolism in the realization of which an important role belongs to AQP4, the main aquaporin of the brain. This aquaporin controls water transfer across the blood-brain barrier and water exchange between brain parenchyma and the cerebrospinal fluid. In the world literature, AQP4 is viewed as a molecular target for the drug action directed at correction of the brain water metabolism disorders in pathologies. The new knowledge made it possible to outline principal approaches to pharmacological correction of cerebral water metabolism disorders and edema.
About the Authors
E. P. TitovetsBelarus
Ernst P. Titovets – D. Sc. (Biol.), Professor, Chief researcher
24, Fr. Skoriny Str., 220114, Minsk
A. F. Smeyanovich
Belarus
Arnold F. Smeyanovich – Academician, D. Sc. (Med.), Professor
24, Fr. Skoriny Str., 220114, Minsk
P. V. Kozich
Belarus
Pavel V. Kozich – anesthesiologist-resuscitator, Head of the Department
24, Fr. Skoriny Str., 220114, Minsk
References
1. Walcott B. P., Kahle K. T., Simard J. M. Novel treatment targets for cerebral edema. Neurotherapeutics, 2011, vol. 9, no. 1, pp. 65–72. https://doi.org/10.1007/s13311-011-0087-4
2. Mahajan S., Bhagat H. Cerebral oedema. Pathophysiological mechanisms and experimental therapie. Journal of Neuroanaesthesiology and Critical Care, 2016, vol. 3, no. 4, pp. S22–S28. https://doi.org/10.4103/2348-0548.174731
3. Orešković D., Klarica M. A new look at cerebrospinal fluid movement. Fluids and Barriers of the CNS, 2014, vol. 11, no. 1, art. 16. https://doi.org/10.1186/2045-8118-11-16
4. Orešković D. R. M., Radoš M., Klarica M. Cerebrospinal fluid secretion by the choroid plexus? Physiological Reviews, 2016, vol. 96, no. 4, pp. 1661–1662. https://doi.org/10.1152/physrev.00021.2016
5. Orešković D., Radoš M., Klarica M. New concepts of cerebrospinal fluid physiology and development of hydrocephalus. Pediatric Neurosurgery, 2016, vol. 52, no. 6, pp. 417–425. https://doi.org/10.1159/000452169
6. Wolburg H., Wolburg-Buchholz K., Fallier-Becker P., Noell S., Mack A. F. Structure and functions of aquaporin-4- based orthogonal arrays of particles. International Review of Cell and Molecular Biology. Vol. 287. New York, Elsevier, 2011, pp. 1–41. https://doi.org/10.1016/b978-0-12-386043-9.00001-3
7. Fukuda A. M., Badaut J. Aquaporin 4: a player in cerebral edema and neuroinflammation. Journal of Neuroinflammation, 2012, vol. 9, no. 1, art. 279. https://doi.org/10.1186/1742-2094-9-279
8. Hayman E. G., Wessell A., Gerzanich V., Sheth K. N., Simard J. M. Mechanisms of global cerebral edema formation in aneurysmal subarachnoid hemorrhage. Neurocritical Care, 2016, vol. 26, no. 2, pp. 301–310. https://doi.org/10.1007/s12028-016-0354-7
9. Papadopoulos M. C., Verkman A. S. Aquaporin-4 and brain edema. Pediatric Nephrology, 2007, vol. 22, no. 6, pp. 778–784. https://doi.org/10.1007/s00467-006-0411-0
10. Abbott N. J., Rönnbäck L., Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews Neuroscience, 2006, vol. 7, no. 1, pp. 41–53. https://doi.org/10.1038/nrn1824
11. Titovets E. P. Aquaporins of man and animals. Fundamental and clinical aspects. Minsk, Belorusskaya nauka Publ., 2007. 239 p. (in Russian).
12. Titovets E. P., Smeyanovich A. F. Cerebral edema and the latest trends in the therapy. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seriya meditsinskikh navuk = Proceedings of the National Academy of Sciences of Belarus. Medical series, 2011, no. 1, pp. 84–94 (in Russian).
13. Frydenlund D. S. Pathophysiological roles of aquaporin-4 in CNS disease. Ph. D. Thesis. Oslo, 2011. 65 p.
14. Steiner E., Enzmann G. U., Lin S., Ghavampour S., Hannocks M. J., Zuber B., Rüegg M. A., Sorokin L., Engelhardt B. Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation. Glia, 2012, vol. 60, no. 11, pp. 1646–1659. https://doi.org/10.1002/glia.22383
15. Titovets E., Parkhach L. P. Novel computational model of the brain water metabolism: introducing an interdisciplinary approach. Molekulyarnye, membrannye i kletochnye osnovy funktsionirovaniya biosistem: Mezhdunarodnaya nauchnaya konferentsiya, Odinnadtsatyi s’ezd Belorusskogo obshchestvennogo ob’edineniya fotobiologov i biofzikov, 17–20 iyunya 2014 g., Minsk, Belarus’: sbornik statei. Chast’ 1 [Molecular, membrane and cellular bases of functioning of biosystems: International Scientifc Conference, Eleventh Congress of the Belarusian Public Association of Photobiologists and Biophysicists, June 17–20, 2014, Minsk, Belarus: collection of articles. Pt. 1]. Мinsk, 2014, pp. 339–341.
16. Soveral G., Casini A. Aquaporin modulators: a patent review (2010–2015). Expert Opinion on Therapeutic Patents, 2016, vol. 27, no. 1, pp. 49–62. https://doi.org/10.1080/13543776.2017.1236085
17. Tradtrantip L., Jin B.-J., Yao X., Anderson M. O., Verkman A. S. Aquaporin-targeted therapeutics. State-of-the-feld. Advances in Experimental Medicine and Biology. Vol. 969. Dordrecht, 2017, pp. 239–250.
18. Verkman A. S., Smith A. J., Phuan P. W., Tradtrantip L., Anderson M. O. The aquaporin-4 water channel as a potential drug target in neurological disorders. Expert Opinion on Therapeutic Targets, 2017, vol. 21, no. 12, pp. 1161–1170. https://doi.org/10.1080/14728222.2017.1398236
19. Gu F., Hata R., Toku K., Yang L., Ma Y. J., Maeda N., Sakanaka M., Tanaka J. Testosterone up-regulates aquaporin-4 expression in cultured astrocytes. Journal of Neuroscience Research, 2003, vol. 72, no. 6, pp. 709–715. https://doi.org/10.1002/jnr.10603
20. Voigtlaender J., Heindl B., Becker B. F. Transmembrane water influx via aquaporin-1 is inhibited by barbiturates and propofol in red blood cells. Naunyn-Schmiedeberg’s Archives of Pharmacology, 2002, vol. 366, no. 3, pp. 209–217. https://doi.org/10.1007/s00210-002-0580-8
21. Ding Z., Zhang J., Xu, J., Sheng G., Huang G. Propofol administration modulates AQP-4 expression and brain edema after traumatic brain injury. Cell Biochemistry and Biophysics, 2013, vol. 67, no. 2, pp. 615–622. https://doi.org/10.1007/s12013-013-9549-0
22. Zheng Y.-Y., Lan Y.-P., Tang H.-F., Zhu S.-M. Propofol pretreatment attenuates aquaporin-4 over-expression and alleviates cerebral edema after transient focal brain ischemia reperfusion in rats. Anesthesia and Analgesia, 2008, vol. 107, no. 6, pp. 2009–2016. https://doi.org/10.1213/ane.0b013e318187c313
23. Gu Y. T., Zhang H., Xue Y. X. Dexamethasone treatment modulates aquaporin-4 expression after intracerebral hemorrhage in rats. Neuroscience Letters, 2007, vol. 413, no. 2, pp. 126–131.
24. Bhattacharya P., Pandey A. K., Paul S., Patnaik R., Yavagal D. R. Aquaporin-4 inhibition mediates piroxicam-induced neuroprotection against focal cerebral ischemia/reperfusion injury in rodents. PLoS ONE, 2013, vol. 8, no. 9, p. e73481. https://doi.org/10.1371/journal.pone.0073481
25. Tanimura Y., Hiroaki Y., Fujiyoshi Y. Acetazolamide reversibly inhibits water conduction by aquaporin-4. Journal of Structural Biology, 2009, vol. 166, no. 1, pp. 16–21. https://doi.org/10.1016/j.jsb.2008.11.010
26. Gao J., Wang X., Chang Y., Zhang J., Song Q., Yu H., Li X. Acetazolamide inhibits osmotic water permeability by interaction with aquaporin-1. Analytical Biochemistry, 2006, vol. 350, no. 2, pp. 165–170. https://doi.org/10.1016/j.ab.2006.01.003
27. Migliati E., Meurice N., DuBois P., Fang J. S., Somasekharan S., Beckett E., Flynn G., Yool A. J. Inhibition of aquaporin-1 and aquaporin-4 water permeability by a derivative of the loop diuretic bumetanide acting at an internal poreoccluding binding site. Molecular Pharmacology, 2009, vol. 76, no. 1, pp. 105–112. https://doi.org/10.1124/mol.108.053744
28. Dorward H. S., Du A., Bruhn M. A., Wrin J., Pei J. V., Evdokiou A., Price T. J., Yool A. J., Hardingham J. E. Pharmacological blockade of aquaporin-1 water channel by AqB013 restricts migration and invasiveness of colon cancer cells and prevents endothelial tube formation in vitro. Journal of Experimental and Clinical Cancer Research, 2016, vol. 35, art. 36. https://doi.org/10.1186/s13046-016-0310-6
29. Yool A. J., Morelle J., Cnops Y., Verbavatz J.-M., Campbell E. M, Beckett E. A. H., Booker G. W., Flynn G., Devuyst O. AqF026 is a pharmacologic agonist of the water channel aquaporin-1. Journal of the American Society of Nephrology, 2013, vol. 24, no. 7, pp. 1045–1052. https://doi.org/10.1681/asn.2012080869
30. Stoenoiu M. S. Corticosteroids induce expression of aquaporin-1 and increase transcellular water transport in rat peritoneum. Journal of the American Society of Nephrology, 2003, vol. 14, no. 3, pp. 555–565. https://doi.org/10.1097/01. asn.0000053420.37216.9e
31. Crane J. M., Van Hoek A. N., Skach W. R., Verkman A. S. Aquaporin-4 dynamics in orthogonal arrays in live cells visualized by quantum dot single particle tracking. Molecular Biology of the Cell, 2008, vol. 19, no. 8, pp. 3369–3378. https://doi.org/10.1091/mbc.e08-03-0322
32. Sripathirathan K., Brown J., Neafsey E. J., Collins M. A. Linking binge alcohol-induced neurodamage to brain edema and potential aquaporin-4 upregulation: evidence in rat organotypic brain slice cultures and in vivo. Journal of Neurotrauma, 2009, vol. 26, no. 2, pp. 261–273. https://doi.org/10.1089/neu.2008.0682
33. Yool A. J., Brown E. A., Flynn G. A. Roles for novel pharmacological blockers of aquaporins in the treatment of brain oedema and cancer. Clinical and Experimental Pharmacology and Physiology, 2010, vol. 37, no. 4, pp. 403–409. https://doi.org/10.1111/j.1440-1681.2009.05244.x
34. Papadopoulos M. C., Verkman A. S. Potential utility of aquaporin modulators for therapy of brain disorders. Progress in Brain Research, 2008, vol. 170, pp. 589–601. https://doi.org/10.1016/s0079-6123(08)00446-9
Review
For citations:
Titovets E.P., Smeyanovich A.F., Kozich P.V. Correction of the disorders of the cerebral water metabolism. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2019;16(1):99-107. (In Russ.) https://doi.org/10.29235/1814-6023-2019-16-1-99-107