Preview

Proceedings of the National Academy of Sciences of Belarus, Medical series

Advanced search

Regulatory and therapeutic potential for obesity

https://doi.org/10.29235/1814-6023-2018-15-4-483-492

Abstract

A literature review about the role of microrna in biological processes associated with .obesity was completed. Modern ideas about micrornas, their biogenesis and their role in the formation of adipose tissue, glucose and lipid metabolism were described. The possibilities of using microRNA as new biomarkers and therapeutic targets for development of anti-obesity drugs were considered.

About the Authors

O. E. Poluliakh
Institute of Physiology of the National Academy of Sciences of Belarus, Minsk
Belarus
Researcher


E. I. Kalinovskaya
Institute of Physiology of the National Academy of Sciences of Belarus, Minsk
Belarus
Ph. D. (Med), Head of the Laboratory


A. A. Basalai
Institute of Physiology of the National Academy of Sciences of Belarus, Minsk
Belarus
Junior researcher


References

1. Lin Q., Gao Z., Alarcon R. M., Ye J., Yun Z. A role of miR-27 in the regulation of adipogenesis. FEBS Journal, 2009, vol. 276, no. 8, pp. 2348–2358. https://doi.org/10.1111/j.1742-4658.2009.06967.x

2. Klöting N., Berthold S., Kovacs P., Schön M. R., Fasshauer M., Ruschke K., Stumvoll M., Blüher M. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS ONE, 2009, vol. 4, no. 3, pp. e4699. https://doi.org/ 10.1371/journal.pone.0004699

3. Cherevko А. N., Girko I. N., Perkovskaya А. F. The problem of obesity in the adult population of the Republic of Belarus: age, gender and social aspect. Voprosy organizatsii i informatizatsii zdravookhraneniya [Issues of organization and information health], 2015, no. 3, pp. 68–70 (in Russian).

4. Kang J. G., Park Ch.-Y. Anti-obesity drugs: a review about their effects and safety. Diabetes and Metabolism Journal, 2012, vol. 36, no. 1, pp. 13–25. https://doi.org/10.4093/dmj.2012.36.1.13

5. Litvinova L. S., Kirienkova E. V., Mazunin I. O., Vasilenko M. A., Fattakhov N. S. Pathogenesis of insulin resistance in metabolic obesity. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2015, vol. 8, no. 3, pp. 192–202.

6. Lewis B. P., Burge C. B., Bartel D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, vol. 120, no. 1, pp. 15–20. https://doi.org/10.1016/j.cell.2004.12.035

7. Arner P., Kulyté A. MicroRNA regulatory networks in human adipose tissue and obesity. Nature Reviews Endocrinology, 2015, vol. 11, no. 5, pp. 276–288. https://doi.org/10.1038/nrendo.2015.25

8. Akushev V. N. MicroRNA: small molecules with great importance. Klinicheskaya onkogematologiya. Fundamental’nye issledovaniya i klinicheskaya praktika [Clinical Oncohematology. Basic Research and Clinical Practice], 2015, vol. 8, no. 1, pp. 1–12 (in Russian).

9. Davis B. N., Hilyard A. C., Lagna G., Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature, 2008, vol. 454, no. 7200, pp. 56–61. https://doi.org/10.1038/nature07086

10. Guil S., Cáceres J. F. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nature Structural and Molecular Biology, 2007, vol. 14, no.7, pp. 591–596. https://doi.org/10.1038/nsmb1250

11. Kedde M., Strasser M. J., Boldajipour B., Vrielink J. A. F. O., Slanchev K., Sage C. et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell, 2007, vol. 131, no. 7, pp. 1273–1286. https://doi.org/10.1016/j.cell.2007.11.034

12. Lin R.-J., Lin Y.-C., Chen J., Kuo H.-H., Chen Y.-Y., Diccianni M. B., London W. B., Chang C.-H., Yu A. L. MicroRNA signature and expression of Dicer and Drosha can predict prognosis and delineate risk groups in neuroblastoma. Cancer Research, 2010, vol. 70, no. 20, pp. 7841–7850. https://doi.org/10.1158/0008-5472.can-10-0970

13. Xu P., Vernooy S. Y., Guo M., Hay B. A. The drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Current Biology, 2003, vol. 13, no. 9, pp. 790–795. https://doi.org/10.1016/s0960-9822(03)00250-1

14. Teleman A. A., Cohen S. M. Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes and Development, 2006, vol. 20, no. 4, pp. 417–422. https://doi.org/10.1101/gad.374406

15. Esau C., Kang X., Peralta E., Hanson E., Marcusson E. G., Ravichandran L. V. et al. MicroRNA-143 regulates adipocyte differentiation. Journal of Biological Chemistry, 2004, vol. 279, no. 50, pp. 52361–52365. https://doi.org/10.1074/jbc.c400438200

16. Tofilo М. А., Egorova Е. N. MicroRNA, regulating adipogenesis in type 2 diabetes mellitus. Zdorov’e i obrazovanie v XXI veke = Health & education millennium, 2017, vol. 19, no. 3, pp. 108–111 (in Russian).

17. Xie H., Lim B., Lodish H. F. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes, 2009, vol. 58, no. 5, pp. 1050–1057. https://doi.org/10.2337/db08-1299

18. Gerin I., Bommer G. T., McCoin C. S., Sousa K. M., Krishnan V., MacDougald O. A. Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. American Journal of Physiology-Endocrinology and Metabolism, 2010, vol. 299, no. 2, pp. E198–E206. https://doi.org/10.1152/ajpendo.00179.2010

19. Xie H., Sun L., Lodish H. F. Targeting microRNAs in obesity. Expert Opinion on Therapeutic Targets, 2009, vol. 13, no. 10, pp. 1227–1238. https://doi.org/10.1517/14728220903190707

20. Kennell J. A., Gerin I., MacDougald O. A., Cadigan K. M. The microRNA miR-8 is a conserved negative regulator of Wnt signaling. Proceedings of the National Academy of Sciences, 2008, vol. 105, no. 40, pp. 15417–15422. https://doi.org/10.1073/pnas.0807763105

21. Wang Q., Li Y. C., Wang J., Kong J., Qi Y., Quigg R. J., Li X. MiR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proceedings of the National Academy of Sciences, 2008, vol. 105, no. 8, pp. 2889–2894. https://doi.org/10.1073/pnas.0800178105

22. Zhou X., Benson K. F., Ashar H. R., Chada K. Mutation responsible for the mouse pygmy phenotype in the deve lopmentally regulated factor HMGI-C. Nature, 1995, vol. 376, no. 6543, pp. 771–774. https://doi.org/10.1038/376771a0

23. Sun T., Fu M., Bookout A. L., Kliewer S. A., Mangelsdorf D. J. MicroRNA let-7 regulates 3T3-L1 adipogenesis. Molecular Endocrinology, 2009, vol. 23, no. 6, pp. 925–931. https://doi.org/10.1210/me.2008-0298

24. Zhu H., Shyh-Chang N., Segrè A. V., Shinoda G., Shah S. P., Einhorn W. S. et al. The Lin28/let-7 axis regulates glucose metabolism. Cell, 2011, vol. 147, no. 1, pp. 81–94. https://doi.org/10.1016/j.cell.2011.08.033

25. Lin Q., Gao Z., Alarcon R. M., Ye J., Yun Z. A role of miR-27 in the regulation of adipogenesis. FEBS Journal, 2009, vol. 276, no. 8, pp. 2348–2358. https://doi.org/10.1111/j.1742-4658.2009.06967.x

26. Egorov А. D., Pen’kov D. N., Tkachuk V. А. Molecular and cellular mechanisms of adipogenesis. Sakharnyi diabet [Diabetes mellitus], 2015, vol. 18, no. 2, pp. 12–19 (in Russian).

27. Tang Y.-F., Zhang Y., Li X.-Y., Li C., Tian W., Liu L. Expression of miR-31, miR-125b-5p, and miR-326 in the adipogenic differentiation process of adipose-derived stem cells. OMICS: A Journal of Integrative Biology, 2009, vol. 13, no. 4, pp. 331–336. https://doi.org/10.1089/omi.2009.0017

28. Nóbrega C., Rodriguez-López R. (eds). Molecular mechanisms underpinning the development of obesity. Basel, Springer, 2014. 194 p.

29. Heneghan H. M., Miller N., McAnena O. J., O’Brien T., Kerin M. J. Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. Journal of Clinical Endocrinology and Metabolism, 2011, vol. 96, no. 5, pp. E846–E850. https://doi.org/10.1210/jc.2010-2701

30. Ge Q., Brichard S., Yi X., QiFu Li. MicroRNAs as a new mechanism regulating adipose tissue inflammation in obesity and .as a novel therapeutic strategy in the metabolic syndrome. Journal of Immunology Research, 2014, vol. 2014, art. ID 987285. https://doi.org/10.1155/2014/987285

31. Esau C., Davis S., Murray S. F., Xing Xian Yu, Pandey S. K., Pear M. et al. MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metabolism, 2006, vol. 3, no. 2, pp. 87–98. https://doi.org/10.1016/j.cmet.2006.01.005

32. Rotlan N., Price N., Pati P., Goedeke L., Fernández-Hernando C. MicroRNAs in lipoprotein metabolism and cardiometabolic disorders. Atherosclerosis, 2016, vol. 246, pp. 352–360. https://doi.org/10.1016/j.atherosclerosis.2016.01.025

33. McGregor R. A., Choi M. S. MicroRNAs in the regulation of adipogenesis and obesity. Current Molecular Medicine, 2011, vol. 11, no. 4, pp. 304–316. https://doi.org/10.2174/156652411795677990


Review

For citations:


Poluliakh O.E., Kalinovskaya E.I., Basalai A.A. Regulatory and therapeutic potential for obesity. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2018;15(4):483-492. (In Russ.) https://doi.org/10.29235/1814-6023-2018-15-4-483-492

Views: 484


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)