Hypoxia of pancreas in pathogenesis of fibrosis in chronic pancreatitis
https://doi.org/10.29235/1814-6023-2018-15-4-391-404
Abstract
The pathogenesis of chronic pancreatitis and pain syndrome had not been fully studied. The aim of the study was to evaluate the interrelation of fibrotic and ischemic changes in the parenchyma of pancreas, and pancreatic duct pressure in the pathogenesis of chronic pancreatitis. In a prospective study, a morphological, the immunohistochemical study of pancreatic preparations was performed, and the indicators of tissue oximetry and pancreatic duct pressure were studied intraoperatively in 40 patients operated for chronic pancreatitis. It was found that with the progression of fibrotic changes in the pancreatic tissue of patients with chronic pancreatitis, there was an increase in TGF-β1 expression (р < 0.001), an increase in the number of pancreatic stellate cells (r = 0.32, р < 0.05), a decrease in glycogen (ischemia marker). The intraoperative direct measurement revealed a high pancreatic duct pressure: 34.2 (26.6; 45.3) mm Hg, a decrease in oxygenation of the pancreatic tissue that correlate with a degree of fibrosis. The pancreatic tissue in chronic pancreatitis has chronic hypoxia associated with fibrosis and increased pancreatic ductal hypertension. So, secondary pancreatic ischemia can be a significant factor in the progression of fibrosis and chronic pain syndrome in chronic pancreatitis.
About the Authors
A. V. VarabeiBelarus
Corresponding Member, D. Sc. (Med.), Professor, Head of the Department
A. Ch. Shuleika
Belarus
Ph. D. (Med.), Assistant Professor
T. E. Vladimirskay
Belarus
Ph. D. (Biol.), Head of the Department
I. A. Shved
Belarus
D. Sc. (Med.), Professor, Chief researcher
Y. I. Vizhinis
Belarus
Ph. D. (Med.), Assistant Professor
M. Y. Makki
Belarus
clinical resident
References
1. Worning H. Incidence and prevalence of chronic pancreatitis. Chronic Pancreatitis. Berlin, 1990, pp. 8–14.
2. Mössner J. Epidemiology of chronic pancreatitis. Standards in Pancreatic Surgery. Berlin, 1993, pp. 263–271.
3. Apte M., Pirola R., Wilson J. The fibrosis of chronic pancreatitis:new insights into the role of pancreatic stellate cells. Antioxidans and Redox Signaling, 2011, vol. 15, no. 10, pp. 2711–2722. https://doi.org/10.1089/ars.2011.4079
4. Lankisch P. G., Banks P. A. Pancreatitis. Berlin, Springer-Verlag, 1998. 377 p.
5. Dreilin D. A., Koller M. The natural history of alcoholic pancreatitis: update 1985. Mount Sinai Journal of Medicine, 1985, vol. 52, no. 5, pp. 340–342.
6. Sarles H., Payan H., Tasso F., Sahel J. Chronic pancreatitis, relapsing pancreatitis, calcification of the pancreas. Gastroenterology. 2nd ed. Philadelphia, 1976, pp. 1040–1051.
7. Multigner L., Sarles H., Lombardo D., de Caro A. Pancreatic stone protein II: implication in stone formation during the course of chronic calcifying pancreatitis. Gastroenterology, 1985, vol. 89, no. 2, pp. 387–391. https://doi.org/10.1016/0016-5085(85)90341-5
8. Sarles H., Bernard J. P., Gullo L. Pathogenesis of chronic pancreatitis. Gut, 1990, vol. 31, no. 6, pp. 629–632. http://dx.doi.org/10.1136/gut.31.6.629
9. Noronha M., Bordalo O., Dreiling D. A. Alcohol and the pancreas. II. Pancreatic morphology of advanced alcoholic pancreatitis. American Journal of Gastroenterology, 1981, vol. 76, no. 2, pp. 120–124.
10. Braganza J. M. Pancreatic disease: a casualty of hepatic «detoxification»? Lancet, 1983, vol. 29, no. 8357, pp. 1000–1003. https://doi.org/10.1016/s0140-6736(83)90983-2
11. Klöppel G., Maillet B. Pathology of acute and chronic pancreatitis. Pancreas, 1993, vol. 8, no. 6, pp. 659–670. https://doi.org/10.1097/00006676-199311000-00001
12. Comfort M. W., Gambill E. E., Baggenstoss A. H. Chronic relapsing pancreatitis. A study of twenty-nine cases without associated disease of the biliary or gastro-intestinal tract. Gastroenterology, 1946, vol. 6, pp. 239–285, 376–408.
13. Ammann R. W., Heitz P. U., Klöppel G. Course of alcoholic chronic pancreatitis: a prospective clinicomorphological long-term study. Gastroenterology, 1996, vol. 111, no. 1, pp. 224–231.
14. Korc M, Friess H., Yamanaka Y., Kobrin M. S., Buchler M., Beger H. G. Chronic pancreatitis is associated with increased concentrations of epidermal growth factor receptor, transforming growth factor, and phospholipase C gamma. Gut, 1994, vol. 35, no. 10, pp. 1468–1473. https://doi.org/10.1136/gut.35.10.1468
15. Laethem van J.-L., Deviere J., Resibois A., Rickaert F., Vertongen P., Ohtani H., Cremer M., Miyazono K., Robberecht P. Localizing of transforming growth factor β-1 and its latent binding protein in human chronic pancreatitis. Gastroenterology, 1995, vol. 108, no. 6, pp. 1873–1881. https://doi.org/10.1016/0016-5085(95)90152-3
16. Klöppel G., Detlefsen S., Feyerabend B. Fibrosis of the pancreas: the initial tissue damage and the resulting pattern. Virchows Archiv, 2004, vol. 445, no. 1, pp. 1–8. https://doi.org/10.1007/s00428-004-1021-5
17. Klöppel G., Maillet B. The morphological basis for the evolution of acute pancreatitis into chronic pancreatitis. Virchows Archiv. A, Pathological Anatomy and Histopathology, 1992, vol. 420, no. 1, pp. 1–4. https://doi.org/10.1007/BF01605976
18. Klöppel G. Chronic pancreatitis of alcoholic and nonalcoholic origin. Seminars in Diagnostic Pathology, 2004, vol. 21, no. 4, pp. 227–236. https://doi.org/10.1053/j.semdp.2005.07.002
19. Friedman S. L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiological Reviews, 2008, vol. 88, no. 1, pp. 125–172. https://doi.org/10.1152/physrev.00013.2007
20. Omary M. B., Lugea A., Lowe A. W., Pandol S. J. The pancreatic stellate cell: a star on the rise in pancreatic diseases. Journal of Clinical Investigation, 2007, vol. 117, no. 1, pp. 50–59. https://doi.org/10.1172/jci30082
21. Watari N., Hotta Y., Mabuchi Y. Morphological studies on a vitamin A-storing cell and its complex with macrophage observed in mouse pancreatic tissues following excess vitamin A administration. Okajimas Folia Anatomica Japonica, 1982, vol. 58, no. 4–6, pp. 837–858. https://doi.org/10.2535/ofaj1936.58.4-6_837
22. Apte M. V., Haber P. S., Applegate T. L., Norton I. D., McCaughan G. W., Korsten M. A., Pirola R. C., Wilson J. S. Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut, 1998, vol. 43, no. 1, pp. 128–133. https://doi.org/10.1136/gut.43.1.128
23. Bachem M. G., Schneider E., Groß H., Weidenbach H., Schmid R. M., Menke A., Siech M., Beger H., Grünert A., Adler G. Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology, 1998, vol. 115, no. 2, pp. 421–432. https://doi.org/10.1016/s0016-5085(98)70209-4
24. Zimmermann A., Gloor B., Kappeler A., Uhl W., Friess H, Büchler M. W. Pancreatic stellate cells contribute to regeneration early after acute necrotising pancreatitis in humans. Gut, 2002, vol. 51, no. 4, pp. 574–578. https://doi.org/10.1136/gut.51.4.574
25. Lugea A., Nan L., French S. W., Bezerra J. A., Gukovskaya A. S., Pandol S. J. Pancreas recovery following ceruleininduced pancreatitis is impaired in plasminogen-deficient mice. Gastroenterology, 2006, vol. 131, no. 3, pp. 885–899. https:// doi.org/10.1053/j.gastro.2006.06.023
26. Jaster R., Hilgendorf I., Fitzner B., Brock P., Sparmann G., Emmrich J., Liebe S. Regulation of pancreatic stellate cell function in vitro: biological and molecular effects of all-transretinoic acid. Biochemical Pharmacology, 2003, vol. 66, no. 4, pp. 633–641. https://doi.org/10.1016/s0006-2952(03)00390-3
27. Talukdar R., Tandon R. K. Pancreatic stellate cells: new target in the treatment of chronic pancreatitis. Journal Gastroenterology and Hepatology, 2008, vol. 23, no. 1, pp. 34–41. https://doi.org/10.1111/j.1440-1746.2007.05206.x
28. Bachem M. G., Schünemann M., Ramadani M., Siech M., Beger H., Buck A., Zhou S., Schmid-Kotsas A., Adler G. Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology, 2005, vol. 128, no. 4, pp. 907–921. https://doi.org/10.1053/j.gastro.2004.12.036
29. Phillips P. A., McCarroll J. A., Park S., Wu M.-J., Pirola R., Korsten M., Wilson J. S., Apte M. V. Rat pancreatic stellate cells secrete matrix metalloproteinases: implications for extracellular matrix turnover. Gut, 2003, vol. 52, no. 2, pp. 275–282. https://doi.org/10.1136/gut.52.2.275
30. Vonlaufen A., Joshi S., Qu C., Phillips P. A., Xu Z., Parker N. R., Toi C. S., Pirola R. C., Wilson J. S., Goldstein D., Apte M. V. Pancreatic stellate cells: partners in crime with pancreatic cancer cells. Cancer Research, 2008, vol. 68, no. 7, pp. 2085–2093. https://doi.org/10.1158/0008-5472.can-07-2477
31. Apte M. V., Haber P. S., Darby S. J., Rodgers S. C., McCaughan G. W., Korsten M. A., Pirola R. C., Wilson J. S. Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis. Gut, 1999, vol. 44, no. 4, pp. 534–541. https://doi.org/10.1136/gut.44.4.534
32. Luttenberger T., Schmid-Kotsas A., Menke A., Siech M., Beger H., Adler G., Grünert A., Bachem M. G. Platelet-derived growth factors stimulate proliferation and extracellular matrix synthesis of pancreatic stellate cells: implications in pathogenesis of pancreas fibrosis. Laboratory Investigation, 2000, vol. 80, no. 1, pp. 47–55. https://doi.org/10.1038/labinvest.3780007
33. Schneider E., Schmid-Kotsas A., Zhao J., Weidenbach H., Schmid R. M., Menke A., Adler G., Waltenberger J., Grünert A., Bachem M. G. Identification of mediators stimulating proliferation and matrix synthesis of rat pancreatic stellate cells. American Journal of Physiology-Cell Physiology, 2001, vol. 281, no. 2, pp. C532–C543. https://doi.org/10.1152/ ajpcell.2001.281.2.c532
34. Shek F. W.-T., Benyon R. C., Walker F. M., McCrudden P. R., Pender S. L. F., Williams E. J., Johnson P. A., Johnson C. D., Bateman A. C., Fine D. R., Iredale J. P. Expression of transforming growth factor-β1 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis. American Journal of Pathology, 2002, vol. 160, no. 5, pp. 1787–1798. https://doi.org/10.1016/s0002-9440(10)61125-x
35. Mews P., Phillips P., Fahmy R., Korsten M., Pirola R., Wilson J., Apte M. Pancreatic stellate cells respond to inflammatory cytokines: potential role in chronic pancreatitis. Gut, 2002, vol. 50, no. 4, pp. 535–541. https://doi.org/10.1136/gut.50.4.535
36. Phillips P. A., Wu M. J., Kumar R. K., Doherty E., McCarroll J. A., Park S., Pirola R. C., Wilson J. S., Apte M. V. Cell migration: a novel aspect of pancreatic stellate cell biology. Gut, 2003, vol. 52, pp. 677–682. https://doi.org/10.1136/gut.52.5.677
37. Hama K., Ohnishi H., Aoki H., Kita H., Yamamoto H., Osawa H., Sato K., Tamada K., Mashima H., Yasuda H., Sugano K. Angiotensin II promotes the proliferation of activated pancreatic stellate cells by Smad7 induction through a protein kinase C pathway. Biochemical and Biophysical Research Communications, 2006, vol. 340, no. 3, pp. 742–750. https://doi.org/10.1016/j.bbrc.2005.12.069
38. Gao R., Brigstock D. R. Connective tissue growth factor (CCN2) in rat pancreatic stellate cell function: integrin alpha5beta1 as a novel CCN2 receptor. Gastroenterology, 2005, vol. 129, no. 3, pp. 1019–1030. https://doi.org/10.1053/j. gastro.2005.06.067
39. Aoki H., Ohnishi H., Hama K., Shinozaki S., Kita H., Osawa H., Yamamoto H., Sato K., Tamada K., Sugano K. Cyclooxygenase-2 is required for activated pancreatic stellate cells to respond to pro-inflammatory cytokines. American Journal of Physiology-Cell Physiology, 2007, vol. 292, no. 1, pp. C259–C268. https://doi.org/10.1152/ajpcell.00030.2006
40. Ohnishi N., Miyata T., Ohnishi H., Yasuda H., Tamada K., Ueda N., Mashima H., Sugano K. Activin A is an autocrine activator of rat pancreatic stellate cells: potential therapeutic role of follistatin for pancreatic fibrosis. Gut, 2003, vol. 52, no. 10, pp. 1487–1493. https://doi.org/10.1136/gut.52.10.1487
41. Masamune A., Satoh M., Kikuta K., Suzuki N., Satoh K., Shimosegawa T. Endothelin-1 stimulates contraction and migration of rat pancreatic stellate cells. World Journal of Gastroenterology, 2005, vol. 11, no. 39, pp. 6144–6151. https://doi.org/10.3748/wjg.v11.i39.6144
42. Ammann R. W., Heitz P. U., Kloppel G. Course of alcoholic chronic pancreatitis: a prospective clinicomorphological long-term study. Gastroenterology, 1996, vol. 111, no. 1, pp. 224–231. https://doi.org/10.1053/gast.1996.v111.pm8698203
43. Detlefsen S., Sipos B., Feyerabend B., Klöppel G. Fibrogenesis in alcoholic chronic pancreatitis: the role of tissue necrosis, macrophages, myofibroblasts and cytokines. Modern Pathology, 2006, vol. 19, no. 8, pp. 1019–1026. https://doi.org/10.1038/modpathol.3800613
44. Masamune A., Shimosegawa T. Pancreatic stellate cells – Multi-functional cells in the pancreas. Pancreatology, 2013, vol. 13, no. 2, pp. 102–105. https://doi.org/10.1016/j.pan.2012.12.058
45. Shimizu K. Mechanisms of pancreatic fibrosis and applications to the treatment of chronic pancreatitis. Journal of Gastroenterology, 2008, vol. 43, no. 11, pp. 823–832. https://doi.org/10.1007/s00535-008-2249-7
Review
For citations:
Varabei A.V., Shuleika A.Ch., Vladimirskay T.E., Shved I.A., Vizhinis Y.I., Makki M.Y. Hypoxia of pancreas in pathogenesis of fibrosis in chronic pancreatitis. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2018;15(4):391-404. (In Russ.) https://doi.org/10.29235/1814-6023-2018-15-4-391-404