Preview

Proceedings of the National Academy of Sciences of Belarus, Medical series

Advanced search

CORRECTION OF DISORDERS OF THE REPRODUCTIVE FUNCTION OF MALE RATS USING GADOLINIUM ORTHOVANADATE NANOPARTICLES

https://doi.org/10.29235/1814-6023-2018-15-3-293-305

Abstract

Male rats were exposed to emotional stress and had an excessive amount of phytoestrogens with the mother’s milk (from 3 to 22 days of life) and were examined at an age of 10 months. Animals had an excess body weight through an increased weight of visceral fat, changes in protein and lipid metabolism (increased total cholesterol and triglycerides), impaired pro/antioxidant balance. These males had a decreased level of testosterone and impaired spermatogenesis (less total sperm concentration and less concentration of morphologically normal gametes) with the formation of defective spermatozoa. Also, the violations of the sexual behavior and the worst fertilization of females were found. More than a two-fold increase of intrauterine losses in these pregnant females was noted. Due to such changes, the reproductive potential (Fi ) in these males was reduced by half compared to the control level.

The effectiveness of application of gadolinium orthovanadate nanoparticles activated by europium (NPs GdVO4 :Eu3+), as part of a hydrogel or a pharmacological composition (0.33 mg/kg of body mass, 70 days) for correction of male reproductive function disorders was studied. As reference preparations, tribestane (68 mg/kg) or spemane (168 mg/kg) was used. After the treatment, the results of spermatogenesis, testosterone production and fertility of the main group of males became better. Due to the reduction of embryonic losses, the reproductive potential index was normalized. NPs normalized the level of triglycerides, total cholesterol, arginine in the serum, as well as the transaminase activity in the liver. An increase in the weight and gonadotropic activity of hypophysis of the treated males were found, indicating a possible effect of NPs on the central regulatory mechanism of the reproductive function. The higher biological activity of NPs in the hydrosol composition was found, which can be explained by the introduction of auxiliary substances into the pharmacological composition that affects the physicochemical properties of NPs GdVO4 :Eu3+ and their biological activity.

About the Authors

I. O. Belkina
V. Danilevsky Institute for Endocrine Pathology Problems of the National Academy of Medical Sciences of Ukraine
Ukraine

Inna O. Belkina – Junior researcher

10, Alchevsky, 61002, Kharkiv



N. A. Karpenko
V. Danilevsky Institute for Endocrine Pathology Problems of the National Academy of Medical Sciences of Ukraine
Ukraine

Nina A. Karpenko – Ph.  D. (Biol.), Senior researcher, Head of the Laboratory

10, Alchevsky, 61002, Kharkiv

nina.а.karpenko@gmail.com



E. M. Koreneva
V. Danilevsky Institute for Endocrine Pathology Problems of the National Academy of Medical Sciences of Ukraine
Ukraine

Evgenia M. Koreneva – Ph. D. (Biol.), Senior researcher

10, Alchevsky, 61002, Kharkiv

eugenia_ koreneva@ukr.net



N. P. Smolenko
V. Danilevsky Institute for Endocrine Pathology Problems of the National Academy of Medical Sciences of Ukraine
Ukraine

Natalia P. Smolenko – Ph. D. (Biol.), Senior researcher

10, Alchevsky, 61002, Kharkiv



E. E. Chistyakova
V. Danilevsky Institute for Endocrine Pathology Problems of the National Academy of Medical Sciences of Ukraine
Ukraine

Elina E. Chistyakova – Ph. D. (Biol.), Senior researcher

10, Alchevsky, 61002, Kharkiv



V. K. Klochkov
Institute for Scintillation Materials of the National Academy of Sciences of Ukraine
Ukraine

Vladimir K. Klochkov – Ph. D. (Chem.), Senior researcher

60, Nauky Ave, 61072, Kharkiv

 



References

1. Povoroznyuk M. V. Prevalence and main causes of infertility in men. Meditsinskie aspekty zdorov’ya muzhchiny [Medical aspects of male health], 2012, no. 3 (5), pp. 62–73 (in Ukrainian).

2. Punab M., Poolamets O., Paju P., Vihljajev V., Pomm K., Ladva R., Korrovits P., Laan M. Causes of male infertility: a 9-year prospective monocentre study on 1737 patients with reduced total sperm counts. Human Reproduction, 2017, vol. 32, no. 1, pp. 18–31. https://doi.org/10.1093/humrep/dew284

3. Dickerson S. M., Gore A. C. Estrogenic environmental endocrine-disrupting chemical effects on reproductive neuroendocrine function and dysfunction across the life cycle. Reviews in Endocrine and Metabolic Disorders, 2007, vol. 8, no. 2, pp. 143–159. https://doi.org/10.1007/s11154-007-9048-y

4. Gudeloglu A., Brahmbhatt J. V., Parekattil S. J. Medical management of male infertility in the absence of a specific etiology. Seminars in Reproductive Medicine, 2014, vol. 32, no. 4, pp. 313–318. https://doi.org/10.1055/s-0034-1375184

5. Chekman I. S. Physiological and pharmacological properties of nanosized structures. Fіzіologіchnii zhurnal [Physiological journal], 2015, vol. 61, no. 6, pp. 129–138 (in Ukrainian).

6. Taylor U., Barchanski A., Kues W., Barcikowski S., Rath D. Impact of metal nanoparticles on germ cell viability and functionality. Reproduction in Domestic Animals, 2012, vol. 47, no. s4, pp. 359–368. https://doi.org/10.1111/j.1439- 0531.2012.02099.x

7. Albanese A., Tang P. S., Chan W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 2012, no. 14, pp. 1–16.

8. Li W.-Q., Wang F., Liu Z.-M., Wang Y.-C., Wang J., Sun F. Gold nanoparticles elevate plasma testosterone levels in male mice without affecting fertility. Small, 2013, vol. 9, no. 9–10, pp. 1708–1714. https://doi.org/10.1002/smll.201201079

9. Kobyliak N. M., Falalyeyeva T. M., Kuryk O. G., Beregova T. V., Bodnar P. M., Zholobak N. M., Shcherbakov O. B., Bubnov R. V., Spivak M. Y. Antioxidative effects of cerium dioxide nanoparticles ameliorate age-related male infertility: optimistic results in rats and the review of clinical clues for integrative concept of men health and fertility. EPMA Journal, 2015, vol. 6, no. 1, p. 12. https://doi.org/10.1186/s13167-015-0034-2

10. Spivak N. Y., Nosenko N. D., Zholobak N. M., Shcherbakov A. B., Reznikov A. G., Ivanova O. S., Ivanov V. K., Tret’yakov Yu. D. Anoxic cerium dioxide increases the functional activity of the reproductive system of aging male rats. Nanosistemy: fizika, khimiya, matematika = Nanosystems: Physics, Chemistry, Mathematics, 2013, vol. 4, no. 1, pp. 72–77 (in Russian).

11. Afifi M., Almaghrabi O. A., Kadasa N. M. Ameliorative effect of zinc oxide nanoparticles on antioxidants and sperm characteristics in streptozotocin-induced diabetic rat testes. BioMed Research International, 2015, vol. 2015, art. 153573. https://doi.org/10.1155/2015/153573

12. Bal R., Türk G., Tuzcu M., Yilmaz O., Ozercan I., Kuloglu T., Gür S., Nedzvetsky V. S., Tykhomyrov A. A., Andrievsky G. V., G. Baydas, Naziroglu M. Protective effects of nanostructures of hydrated C 60 fullerene on reproductive function in streptozotocin-diabetic male rats. Toxicology, 2011, vol. 282, no. 3, pp. 69–81. https://doi.org/10.1016/j.tox.2010.12.003

13. Karpenko N. A., Malukin Yu. V., Koreneva E. M., Klochkov V. K., Kavok N. S., Smolenko N. P., Pochernyaeva S. S. The effects of chronic intake of nanoparticles of cerium dioxide or gadolinium ortovanadate into aging male rats. Proceedings of the International conference nanomaterials: applications and properties. Sumy, 2013, vol. 2, no. 4, p. 04NABM28.

14. Lux F., Sancey L., Bianchi A., Crémillieux Y., Roux S., Tillement O. Gadolinium-based nanoparticles for theranostic MRI-radiosensitization. Nanomedicine, 2015, vol. 10, no. 11, pp. 1801–1815. https://doi.org/10.2217/nnm.15.30

15. Abdesselem M., Schoeffel M., Maurin I., Ramodiharilafy R., Autret G., Clément O., Tharaux P.-L., Boilot J.-P., Gacoin T., Bouzigues C., Alexandrou A. Multifunctional rare-earth vanadate nanoparticles: luminescent labels, oxidant sensors, and MRI contrast agents. ACS Nano, 2014, vol. 8, no. 11, pp. 11126–11137. https://doi.org/10.1021/nn504170x

16. Vorob’eva N. М., Fedorova E. V, Baranova N. I. Vanadium: biological role, toxicology and pharmacological application. Biosfera = Biosphere, 2013, vol. 5, no. 1, pp. 77–96 (in Russian).

17. Pepato M. Т., Khalil N. M., Giocondo M. P, Brunetti I. L. Vanadium and its complexes: the renewed interest in its biochemistry. Latin American Journal of Pharmacy, 2008, vol. 27, no. 3, pp. 468–476.

18. Sliwowska J. H., Fergani C., Gawałek M., Skowronska B., Fichna P., Lehman M. N. Insulin: its role in the central control of reproduction. Physiology and Behavior, 2014, vol. 133, pp. 197–206. https://doi.org/10.1016/j.physbeh.2014.05.021

19. Pitetti J.-L., Calvel P., Zimmermann C., Conne B., Papaioannou M. D., Aubry F., Cederroth Ch. R., Urner F., Fumel B., Crausaz M., Docquier M., Herrera P. L., Pralong F., Germond M., Guillou F., Jégou B., Nef S. An essential role for insulin and IGF1 receptors in regulating sertoli cell proliferation, testis size, and FSH action in mice. Molecular Endocrinology, 2013, vol. 27, no. 5, pp. 814–827. https://doi.org/10.1210/me.2012-1258

20. Lampiao F., du Plessis S. S. Insulin and leptin enhance human sperm motility, acrosome reaction and nitric oxide production. Asian Journal of Andrology, 2008, vol. 10, no. 5, pp. 799–807. https://doi.org/10.1111/j.1745-7262.2008.00421.x

21. Klochkov V. K., Malyshenko A. I., Sedykh O. O., Malyukin Yu. V. Wet-chemical synthesis and characterization of luminescent colloidal nanoparticles: ReVO 4: Eu 3+(Re=La, Gd, Y) with rod-like and spindle-like shape. Functional Materials, 2011, vol. 18, no. 1, pp. 111–115.

22. Zapadnyuk I. P., Zapadnyuk V. I., Zakhariya E. A., Zapadnyuk B. V. Laboratory animals. Breeding, content, use in the experiment. 3rd ed. Kiev, Vishcha shkola Publ., 1983. 384 p. (in Russian).

23. Karpenko N. O., Chystjakova E. Ye., Korenjeva E. M., Velychko N. F. Method of modeling of neonatal induced male low fertility. Patent UA, no. u 2014 06302, 2014 (in Ukrainian).

24. Stefanov O. V. (ed.). Pre-clinical research of medicinal products. Kiev, Avicena Publ., 2001. 527 p. (in Ukrainian).

25. Karpenko, N. O., Tal’ko V. V., Omel’chuk S. T., Lapta S. S. Integral evaluation of reproductive function of males of laboratory animals. Ukrai’ns’kyj biofarmacevtychnyj zhurnal = Ukrainian Biopharmaceutical Journal, 2011, vol. 13, no. 2, pp. 64–68 (in Ukrainian).

26. Aleinikova T. L., Rubtsova G. V., Pavlova N. A. A guide to practical studies of biochemistry. Moscow, Meditsina Publ., 2000. 126 p. (in Russian).

27. Reznikov A. G. Methods for determining hormones. Kiev, Naukova dumka Publ., 1980. 400 p. (in Russian).

28. Gladkova A. I. Andrological manifestations of stress. Kharkiv, S. A. M Publ., 2013. 268 p. (in Russian).

29. Matthiesson K. L., McLachlan R. I., O’Donnell L., Frydenberg M., Robertson D. M., Stanton P. G., Meachem S. J. The relative roles of follicle-stimulating hormone and luteinizing hormone in maintaining spermatogonial maturation and spermiation in normal men. Journal of Clinical Endocrinology and Metabolism, 2006, vol. 91, no. 10, pp. 3962–3969. https:// doi.org/10.1210/jc.2006-1145

30. Wisniewski A. B., Klein S. L., Lakshmanan Y., Gearhart J. P. Exposure to genistein during gestation and lactation demasculinizes the reproductive system in rats. Journal of Urology, 2003, vol. 169, no. 4, pp. 1582–1586. https://doi. org/10.1097/01.ju.0000046780.23389.e0

31. Henry L. A., Witt D. M. Effects of neonatal resveratrol exposure on adult male and female reproductive physiology and behavior. Developmental Neuroscience, 2006, vol. 28, no. 3, pp. 186–195. https://doi.org/10.1159/000091916

32. Raineki C., Lucion A. B., Weinberg J. Neonatal handling: an overview of the positive and negative effects. Developmental Psychobiology, 2014, vol. 56, no. 8, pp. 1613–1625. https://doi.org/10.1002/dev.21241

33. Toufexis D., Rivarola M. A., Lara H., Viau V. Stress and the reproductive axis. Journal of Neuroendocrinology, 2014, vol. 26, no. 9, pp. 573–586. https://doi.org/10.1111/jne.12179

34. Novikova E. G., Lutov Yu. V., Selyatitskaya V. G. Erectile dysfunction association with hypogonadism and metabolic syndrome among men of various age groups. Uspekhi gerontologii = Advances in Gerontology, 2012, vol. 25, no. 4, pp. 685– 690 (in Russian).

35. Schug T. T., Janesick A., Blumberg B., Heindel J. J. Endocrine disrupting chemicals and disease susceptibility. Journal of Steroid Biochemistry and Molecular Biology, 2011, vol. 127, no. 3–5, pp. 204–215. https://doi.org/10.1016/j.jsbmb.2011.08.007

36. Newbold R. R. Developmental exposure to endocrine-disrupting chemicals programs for reproductive tract alterations and obesity later in life. American Journal of Clinical Nutrition, 2011, vol. 94, no. 6, suppl., pp. 1939S–1942S. https:// doi.org/10.3945/ajcn.110.001057

37. Loizzo A., Loizzo S., Galietta G., Caiola S., Spampinato S., Campana G., Seghieri G., Ghirlanda G., Franconi F. Overweight and metabolic and hormonal parameter disruption are induced in adult male mice by manipulations during lactation period. Pediatric Research, 2006, vol. 59, no. 1, pp. 111–115. https://doi.org/10.1203/01.pdr.0000190575.12965.ce

38. Vaiserman A. Early-life exposure to endocrine disrupting chemicals and later-life health outcomes: an epigenetic bridge? Aging and Disease, 2014, vol. 5, no. 6, pp. 419–429. https://doi.org/10.14336/ad.2014.0500419

39. Goldfine A. B., Patti M.-E., Zuberi L., Goldstein B. J., LeBlanc R., Landaker E. J., Jiang Z. Y., Willsky G. R., Kahn C. R. Metabolic effects of vanadyl sulfate in humans with non-insulin-dependent diabetes mellitus: in vivo and in vitro studies. Metabolism, 2000, vol. 49, no. 3, pp. 400–410. https://doi.org/10.1016/s0026-0495(00)90418-9

40. Clark T. A., Deniset J. F., Heyliger C. E., Pierce G. N. Alternative therapies for diabetes and its cardiac complications: role of vanadium. Heart Failure Reviews, 2014, vol. 19, no. 1, pp. 123–132. https://doi.org/10.1007/s10741-013-9380-0

41. Wang Q., Wang N., Dong M., Chen F., Li Z., Chen Y. GdCl3reduces hyperglycaemia through Akt/FoxO1-induced suppression of hepatic gluconeogenesis in type 2 diabetic mice. Clinical Science, 2014, vol. 127, no. 2, pp. 91–100. https://doi. org/10.1042/cs20130670

42. Alkaladi A., Abdelazim A. M., Afifi M. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocininduced diabetic rats. International Journal of Molecular Sciences, 2014, vol. 15, no. 2, pp. 2015–2023. https://doi.org/10.3390/ ijms15022015

43. Cui W., Guo H., Cui H. Vanadium toxicity in the thymic development. Oncotarget, 2015, vol. 6, no. 30, pp. 28661– 28677. https://doi.org/10.18632/oncotarget.5798

44. Ballester J., Muñoz M. C., Domínguez J., Rigau T., Guinovart J. J., Rodríguez-Gil J. E. Insulin-dependent diabetes affects testicular function by FSH- and LH-linked mechanisms. Journal of Andrology, 2004, vol. 25, no. 5, pp. 706–719. https://doi.org/10.1002/j.1939-4640.2004.tb02845.x


Review

For citations:


Belkina I.O., Karpenko N.A., Koreneva E.M., Smolenko N.P., Chistyakova E.E., Klochkov V.K. CORRECTION OF DISORDERS OF THE REPRODUCTIVE FUNCTION OF MALE RATS USING GADOLINIUM ORTHOVANADATE NANOPARTICLES. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2018;15(3):293-305. (In Russ.) https://doi.org/10.29235/1814-6023-2018-15-3-293-305

Views: 791


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)