MONOCYTES, MACROPHAGES, DENDRITIC AND MYELOID SUPPRESSOR CELLS: GENESIS, CLASSIFICATION, IMMUNOBIOLOGICAL PROPERTIES
https://doi.org/10.29235/1814-6023-2018-15-3-363-382
Abstract
The article presents the modern data on the most important component of natural immunity – cells of the mononuclear phagocyte system. The questions of origin, the spectrum of expressed markers of differentiation, the classification of monocytes (classical, intermediate, non-classical), macrophages (pro-inflammatory and anti-inflammatory) and dendritic cells (myeloid, plasmacytoid), their immunobiological functions, their role in humoral and T-cell immune responses, anergy and tolerance are considered. The possibility of obtaining cellular immunobiological products (adjuvant and tolerogenic) for immunotherapy of oncological, infectious and autoimmune diseases on their basis is analyzed.
About the Author
L. P. TitovBelarus
Leonid P. Titov – Corresponding Member, D. Sc. (Med.), Professor
23, Filimonov Str., 220114, Minsk
References
1. Titov L. P. Medical genomics: human genome organization, gene expression regulation and genetic variability. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya medytsynskikh navuk = Proceedings of the National Academy of Sciences of Belarus. Medical series, 2015, no. 4, pp. 97–113 (in Russian).
2. Karki R., Pandya D., Elston R. C., Ferlini Cr. Defining “mutation” and “polymorphism” in the era of personal genomics. BMC Medical Genomics, 2015, vol. 8, no. 37. 7 p. https://doi.org/10.1186/s12920-015-0115-z
3. Hartmann K., Dutton R. W., McCarthy M. M., Mishel R. I. Cell components in the immune response: II. Cell attachment separation of immune cells. Cellular Immunology, 1970, vol. 1, no. 2, pp. 182–189. https://doi.org/10.1016/0008- 8749(70)90005-5
4. Pierce C. W. Requirement for macrophages in primary and secondary humoral responses. Immunology. Boston, 1984, pp. 157–171.
5. Burnet F. M. A modification of Jerne’s theory of antibody production using the concept of clonal selection. CA: A Cancer Journal for Clinicians, 1976, vol. 26, no. 2, pp. 119–121. https://doi.org/10.3322/canjclin.26.2.119
6. Metchnikoff É. Immunity in infectious diseases. Cambridge, Cambridge University Press, 1905. 617 p.
7. Furth van R., Cohn Z. A. The origin and kinetics of mononuclear phagocytes. Journal of Experimental Medicine, 1968, vol. 128, no. 3, pp. 415–435. https://doi.org/10.1084/jem.128.3.415
8. Furth van R., Cohn Z. A., Hirsch J. G., Humphrey J. H., Spector W. G., Langevoort H. L. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bulletin of the World Health Organization, 1972, vol. 46, no. 6, pp. 845–852.
9. Steinman R. M., Cohn Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. Journal of Experimental Medicine, 1974, vol. 39, no. 2, pp. 380–397. https://doi.org/10.1084/jem.139.2.380
10. Mildner A., Jung S. Development and function of dendritic cell subsets. Immunity, 2014, vol. 40, no. 5, pp. 642–656. https://doi.org/10.1016/j.immuni.2014.04.016
11. Taylor P. R., Gordon S. Monocyte heterogeneity and innate immunity. Immunity, 2003, vol. 19, no. 1, pp. 2–4. https:// doi.org/10.1016/S1074-7613(03)00178-X
12. Sabado R. L., Balan S., Bhardwaj N. Dendritic cell-based immunotherapy. Cell Research, 2017, vol. 27, no. 1, pp. 74–95. https://doi.org/10.1038/cr.2016.157
13. Cybulsky M. I., Cheong C., Robbins C. S. Macrophages and Dendritic Cells: Partners in Atherogenesis. Circulation Research, 2016, vol. 118, no. 4, pp. 637–652. https://doi.org/10.1161/CIRCRESAHA.115.306542
14. Ohradanova-Repic A., Machacek C., Fischer M. B., Stockinger H. Differentiation of human monocytes and derived subsets of macrophages and dendritic cells by the HLDA10 monoclonal antibody panel. Clinical and Translational Immunology, 2016, vol. 5, no. 1, p. e55. https://doi.org/10.1038/cti.2015.39
15. Zalyubovskaya O. I., Zlenko V. V., Bereznyakova M. E., Litvinova O. N., Fomina G. P. Effect of medicines on laboratory parameters. Textbook for students of medical and pharmaceutical universities. Kharkov, Publishing house of the National Pharmaceutical University, 2010. 84 p. (in Russian).
16. Italiani P., Boraschi D. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Frontiers in Immunology, 2014, vol. 5, art. 514. https://doi.org/10.3389/fimmu.2014.00514
17. Geissman F., Gordon S., Hume D. A., Mowat A. M., Randolph G. J. Unravelling mononuclear phagocyte heterogeneity. Nature Reviews Immunology, 2010, vol. 10, no. 6, pp. 453–460. https://doi.org/10.1038/nri2784
18. Jenkins S. J., Hume D. A. Homeostasis in the mononuclear phagocyte system. Trends in Immunology, 2014, vol. 35, no. 8, pp. 358–367. https://doi.org/10.1016/j.it.2014.06.006
19. Lambert C., Preijers F. W. M. B., Yanikkaya Demirel G., Sack U. Monocytes and macrophages in flow: an ESCCA initiative on advanced analyses of monocyte lineage using flow cytometry. Cytometry. Part B: Clinical Cytometry, 2017, vol. 92, no. 3, pp. 180–188. https://doi.org/10.1002/cyto.b.21280
20. Stec M., Weglarczyk K., Baran J., Zuba E., Mytar B., Pryjma J., Zembala M. Expansion and differentiation of CD14+CD16– and CD14++CD16+ human monocyte subsets from cord blood CD34+ hematopoietic progenitors. Journal of Leukocyte Biology, 2007, vol. 82, no. 3, pp. 594–602. https://doi.org/10.1189/jlb.0207117
21. Gerhardt T., Ley K. Monocyte trafficking across the vessel wall. Cardiovascular Research, 2015, vol. 107, no. 3, pp. 321–330. https://doi.org/10.1093/cvr/cvv147
22. Berg K. E., Ljungcrantz I., Andersson L., Bryngelsson C., Hedblad B., Fredrikson G. N., Nilsson J., Björkbacka H. Elevated CD14++CD16– monocytes predict cardiovascular events. Circulation. Cardiovascular Genetics, 2012, vol. 5, no. 1, pp. 122–131. https://doi.org/10.1161/CIRCGENETICS.111.960385
23. Yang J., Zhang L., Yu. C., Yang X.-F., Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomarker Research, 2014, vol. 2, no. 1. 9 p. https://doi.org/10.1186/2050- 7771-2-1
24. Ancuta P., Liu K.-Y., Misra V., Wacleche V. S., Gosselin A., Zhou X., Gabuzda D. Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16– monocyte subsets. BMC Genomics, 2009, vol. 10, no. 1, art. 403. https://doi.org/10.1186/1471-2164-10-403
25. Kaushansky K., Lichtman M. A., Prchal J. T., Levi M. M., Press O. W., Burns L. J., Caligiuri M. Williams Hematology. 9th ed. New York, McGraw-Hill Education, 2016. 2528 p.
26. Chernoshey D. A., Titov L. P. Anergy to mycobacterial antigens in lung cancer patients. Abstracts of 8th European Congress on Clinical Microbiology & Infectious Diseases, Lausanne, Switzerland, 25–28 May, 1997. European Journal of Clinical Microbiology and Infectious Diseases, 1997, vol. 3, suppl. 2. p. 344.
27. Titov L. P. On interrelation between complement activity and monocytic reaction. Problemy tuberkuleza [Problems of tuberculosis], 1978, vol. 56, no. 6, pp. 64–69 (in Russian).
28. Titov L. P. Mantoux test and monocyte-complementary index in patients with pulmonary tuberculosis. Voprosy immunologii: respublikanskii mezhvedomstvennyi sbornik nauchnykh rabot [Immunology questions: republican interdepartmental collection of scientific works]. Minsk, 1979, pp. 55–59 (in Russian).
29. Titov L. P. Monocyte-complementary index for diseases of infectious and non-infectious etiology. Zdravookhranenie Belorussii [Health Care in Belarus], 1989, no. 2, pp. 28–31 (in Russian).
30. Polykchi A. K. Monocyte-complementary index in patient with dyphteria. Visnyk Harkivs’kogo nacional’nogo universytetu imeni V. N. Karazina. Seriya Meditsina [Bulletin of Kharkov National University named after V. N. Karazin. Series Medicine], 2002, no. 4 (546), pp. 66–68 (in Ukrainian).
31. Doshi N., Mitragotri S. Macrophages recognize size and shape of their targets. PLoS One, 2010, vol. 5, no. 4, p. e10051. https://doi.org/10.1371/journal.pone.0010051
32. Ginhoux F., Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nature Reviews Immunology, 2014, vol. 14, no. 6, pp. 392–404. https://doi.org/10.1038/nri3671
33. Gomez Perdiguero E., Klapproth K., Schulz C., Busch K., Azzoni E., Crozet L., Garner H., Trouillet C., de Bruijn M. F., Geissmann F., Rodewald H.-R. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature, 2015, vol. 518, no. 7540, pp. 547–551. https://doi.org/10.1038/nature13989
34. Epelman S., Lavine K. J., Randolph G. J. Origin and functions of tissue macrophages. Immunity, 2014, vol. 41, no. 1, pp. 21–35. https://doi.org/10.1016/j.immuni.2014.06.013
35. Reizis B., Colonna M., Trinchieri G., Barrat F., Gilliet M. Plasmacytoid dendritic cells: one-trick ponies or workhorses of the immune system? Nature Reviews Immunology, 2011, vol. 11, no. 8, pp. 558–565. https://doi.org/10.1038/nri3027
36. Steimann R. M. Decisions about dendritic cells: past, present, and future. Annual Review of Immunology, 2012, vol. 30, no. 1, pp. 1–22. https://doi.org/10.1146/annurev-immunol-100311-102839
37. Gautier E. L., Shay T., Miller J., Greter M., Jakubzick C., Ivanov S., Helft J., Chow A., Elpek K. G., Gordonov S., Mazloom A. R., Ma’ayan A., Chua W. J., Hansen T. H., Turley S. J., Merad M., Randolph G. J. Gene-expression profiles and transcriptional regulatory pathways underlying mouse tissue macrophage identity and diversity of mouse tissue macrophages. Nature Immunology, 2012, vol. 13, no. 11, pp. 1118–1128. https://doi.org/10.1038/ni.2419
38. Bigley V., Haniffa M., Doulatov S., Wang X. N., Dickinson R., McGovern N., Jardine L., Pagan S., Dimmick I., Chua I., Wallis J., Lordan J., Morgan C., Kumararatne D. S., Doffinger R., vanderBurg M., van Dongen J., Cant A., Dick J. E., Hambleton S., Collin M. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. Journal of Experimental Medicine, 2011, vol. 208, no. 2, pp. 227–234. https://doi.org/10.1084/jem.20101459
39. Hashimoto D., Chow A., Noizat C., Teo P., Beasley M. B., Leboeuf M., Becker C. D., See P., Price J., Lucas D., Greter M., Mortha A., Boyer S. W., Forsberg E. C., Tanaka M., vanRooijen N., García-Sastre A., Stanley E. R., Ginhoux F., Frenette P. S., Merad M. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity, 2013, vol. 38, no. 4, pp. 792–804. https://doi.org/10.1016/j.immuni.2013.04.004
40. Wynn T. A., Chawla A., Pollard J. W. Macrophage biology in development, homeostasis and disease. Nature, 2013, vol. 496, no. 7446, pp. 445–455. https://doi.org/10.1038/nature12034
41. Mosser D. M., Edwards J. P. Exploring the full spectrum of macrophage activation. Nature Reviews Immunology, 2008, vol. 8, no. 12, pp. 958–969. https://doi.org/10.1038/nri2448
42. Fraternale A., Brundu S., Magnani M. Polarization and repolarization of macrophages. Journal of Clinical and Cellular Immunology, 2015, vol. 6, no. 2, p. e319. https://doi.org/10.4172/2155-9899.1000319
43. McWhorter F. Y., Wang T., Nguyen P., Chung T., Liu W. F. Modulation of macrophage phenotype by cell shape. Proceedings of the National Academy of Sciences, 2013, vol. 110, no. 43, pp. 17253–17258. https://doi.org/10.1073/ pnas.1308887110
44. Mills C. D., Kincaid K., Alt J. M., Heilman M. J., Hill A. M. M-1/M-2 macrophages and the Th1/Th2 paradigm. Journal of Immunology, 2000, vol. 164, no. 12, pp. 6166–6173. https://doi.org/10.4049/jimmunol.164.12.6166
45. Liu Y.-C., Zou X.-B., Chai Y.-F., Yao Y.-M. Macrophage polarization in inflammatory diseases. International Journal of Biological Sciences, 2014, vol. 10, no. 5, pp. 520–529. https://doi.org/10.7150/ijbs.8879
46. Rőszer T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators of Inflammation, 2015, vol. 2015, art. 816460. https://doi.org/10.1155/2015/816460
47. Titov L. P. Introduction to immunology. Immunocompetent cells. Meditsina = Medicine, 1997, no. 3, pp. 34–35 (in Russian).
48. Ishikawa F., Niiro H., Iino T., Yoshida S., Saito N., Onohara S., Miyamoto T., Minagawa H., Fujii S., Shultz L. D., Harada M., Akashi K. The developmental program of human dendritic cells is operated independently of conventional myeloid and lymphoid pathways. Blood, 2007, vol. 110, no. 10, pp. 3591–3660. https://doi.org/10.1182/blood-2007-02-071613
49. Basta S., Alatery A. The cross-priming pathway: a portrait of an intricate immune system. Scandinavian Journal of Immunology, 2007, vol. 65, no. 4, pp. 311–319. https://doi.org/10.1111/j.1365-3083.2007.01909.x
50. Mendelson M., Hanekom W. A., Ntutela S., Vogt M., Steyn L., Maartens G., Kaplan G. Quantitative and functional differences between peripheral blood myeloid dendritic cells from patients with pleural and parenchymal lung tuberculosis. Clinical and Vaccine Immunology, 2006, vol. 13, no. 12, pp. 1299–1306. https://doi.org/10.1128/CVI.00132-06
51. Martín-Fontecha A., Lanzavecchia A., Sallusto F. Dendritic cell migration to peripheral lymph nodes. Dendritic Cells. Berlin, 2009, pp. 31–49.
52. Amodio G., Comi M., Tomasoni D., Gianolini M. E., Rizzo R., LeMaoult J., Roncarolo M.-G., Gregori S. HLA-G expression levels influence the tolerogenic activity of human DC-10. Haematologica, 2015, vol. 100, no. 4, pp. 548–557. https://doi.org/10.3324/haematol.2014.113803
53. Boltjes A., van Wijk F. Human dendritic cell functional specialization in steady-state and inflammation. Frontiers in Immunology, 2014, vol. 5, art. 131. https://doi.org/10.3389/fimmu.2014.00131
54. Xin H.-M., Peng Y.-Z., Yuan Z.-Q., Guo H. In vitro maturation and migration of immature dendritic cells after chemokine receptor 7 transfection. Canadian Journal of Microbiology, 2009, vol. 55, no. 7, pp. 859–866. https://doi. org/10.1139/w09-041
55. Chu J., Salter R. D. The central role of dendritic cells in immunity. Dendritic Cells in Cancer. New York, 2009, pp. 1–10.
56. Merad M., Sathe P., Helft J., Miller J., Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annual Review of Immunology, 2013, vol. 31, no. 1, pp. 563–604. https://doi.org/10.1146/annurev-immunol-020711-074950
57. Ito T., Inaba M., Inaba K., Toki J., Sogo S., Iguchi T., Adachi Y., Yamaguchi K., Amakawa R., Valladeau J., Saeland S., Fukuhara S., Ikehara S. A CD1a+ /CD11c+ subset of human blood dendritic cells is a direct precursor of Langerhans cells. Journal of Immunology, 1999, vol. 163, no. 3, pp. 1409–1419.
58. Ludewig B., Junt T., Hengartner H., Zinkernagel R. M. Dendritic cells in autoimmune diseases. Current Opinion in Immunology, 2001, vol. 13, no. 6, pp. 657–662. https://doi.org/10.1016/S0952-7915(01)00275-8
59. Kushwah R., Hu J. Role of dendritic cells in the induction of regulatory T cells. Cell and Bioscience, 2011, vol. 1, art. 20. https://doi.org/10.1186/2045-3701-1-20
60. Diebold S. S. Activation of dendritic cells by toll-like receptors and C-type lectins. Dendritic Cells, Berlin, 2009, pp. 3–30.
61. Demoulin S., Roncarati P., Delvenne P., Hubert P. Production of large numbers of plasmacytoid dendritic cells with functional activities from CD34+ hematopoietic progenitor cells: use of interleukin-3. Experimental Hematology, 2012, vol. 40, no. 4, pp. 268–278. https://doi.org/10.1016/j.exphem.2012.01.002
62. Chistiakov D. A., Orekhov A. N., Sobenin I. A., Bobryshev Y. V. Plasmacytoid dendritic cells: development, functions, and role in atherosclerotic inflammation. Frontiers in Physiology, 2014, vol. 5, art. 279. https://doi.org/10.3389/ fphys.2014.00279
63. Titov L. P., Goncharov A. E., Putyrskii L. A., Koshelev S. V., Kosheleva M. I., Putyrskii Yu. L. Immunophenotype and function of monocyte-derived dendritic cells obtained from patients with breast cancer. Zdravookhranenie = Healthcare, 2010, no. 10, pp. 52–55 (in Russian).
64. Kahler D. J., Mellor A. L.T cell regulatory plasmacytoid dendritic cells expressing indoleamine 2,3 dioxygenase. Dendritic Cells. Berlin, 2009, pp. 165–196.
65. Della Bella S., Gennaro M., Vaccari M., Ferraris C., Nicola S., Riva A., Clerici M., Greco M., Villa M. L. Altered maturation of peripheral blood dendritic cells in patients with breast cancer. British Journal of Cancer, 2003, vol. 89, no. 8, pp. 1463–1472. https://doi.org/10.1038/sj.bjc.6601243
66. Titov L. P. Antineoplastic immunity and immunotherapy of oncological diseases. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seriya meditsinskikh navuk = Proceedings of the National Academy of Sciences of Belarus. Medical series, 2002, no. 2, pp. 103–116 (in Russian).
67. Ginhoux F., Merad M. Ontogeny and homeostasis of Langerhans cells. Immunology and Cell Biology, 2010, vol. 88, no. 4, pp. 387–392. https://doi.org/10.1038/icb.2010.38
68. Lozza L., Farinacci M., Bechtle M., Stäber M., Zedler U., Baiocchini A., del Nonno F., Kaufmann S. H. E. Communication between human dendritic cell subsets in tuberculosis: requirements for naive CD4+ T cell stimulation. Frontiers in Immunology, 2014, vol. 5, art. 324. https://doi.org/10.3389/fimmu.2014.00324
69. Kushwah R., Hu J. Complexity of dendritic cell subsets and their function in the host immune system. Immunology, 2011, vol. 133, no. 4, pp. 409–419. https://doi.org/10.1111/j.1365-2567.2011.03457.x
70. Lichtner M., Rossi R., Mengoni F., Vignoli S., Colacchia B., Massetti A. P., Kamga I., Hosmalin A., Vullo V., Mastroianni C. M. Circulating dendritic cells and interferon-alpha production in patients with tuberculosis: correlation with clinical outcome and treatment response. Clinical and Experimental Immunology, 2006, vol. 143, no. 2, pp. 329–337. https:// doi.org/10.1111/j.1365-2249.2005.02994.x
71. El Shikh M. E., Pitzalis C. Follicular dendritic cells in health and disease. Frontiers in Immunology, 2012, vol. 3, art. 292. https://doi.org/10.3389/fimmu.2012.00292
72. Lewis K. L., Caton M. L., Bogunovic M., Greter M., Grajkowska L. T., Ng D., Klinakis A., Charo I. F., Jung S., Gommerman J. L., Ivanov I. I., Liu K., Merad M., Reizis B. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity, 2011, vol. 35, no. 5, pp. 780–791. https://doi.org/10.1016/j. immuni.2011.08.013
73. Lindstedt M., Lundberg K., Borrebaeck C. A. Gene family clustering identifies functionally associated subsets of human in vivo blood and tonsillar dendritic cells. Journal of Immunology, 2005, vol. 175, no. 8, pp. 4839–4846. https://doi. org/10.4049/jimmunol.175.8.4839
74. Bogunovic M., Ginhoux F., Helft J., Shang L., Hashimoto D., Greter M., Liu K., Jakubzick C., Ingersoll M. A., Leboeuf M., Stanley E. R., Nussenzweig M., Lira S. A., Randolph G. J., Merad M. Origin of the lamina propria dendritic cell network. Immunity, 2009, vol. 31, no. 3, pp. 513–525. https://doi.org/10.1016/j.immuni.2009.08.010
75. Toebak M. J., Gibbs S., Bruynzeel D. P., Scheper R. J., Rustemeyer T. Dendritic cells: biology of the skin. Contact Dermatitis, 2009, vol. 60, no. 1, pp. 2–20. https://doi.org/10.1111/j.1600-0536.2008.01443.x
76. Li H., Shi B. Tolerogenic dendritic cells and their applications in transplantation. Cellular and Molecular Immunology, 2015, vol. 12, no. 1, pp. 24–30. https://doi.org/10.1038/cmi.2014.52
77. Sim W. J., Ahl P. J., Connolly J. E. Metabolism is central to tolerogenic dendritic cell function. Mediators of Inflammation, 2016, vol. 2016, art. 2636701. https://doi.org/10.1155/2016/2636701
78. Cavanagh L. L., Boyce A., Smith L., Padmanabha J., Filgueira L., Pietschmann P., Thomas R. Rheumatoid arthritis synovium contains plasmacytoid dendritic cells. Arthritis Research and Therapy, 2005, vol. 7, no. 2, pp. R230–240. https:// doi.org/10.1186/ar1467
79. Gabrilovich D. I., Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology, 2009, vol. 9, no. 3, pp. 162–174. https://doi.org/10.1038/nri2506
80. Bronte V., Brandau S., Chen S. H., Colombo M. P., Frey A. B., Greten T. F., Mandruzzato S., Murray P. J., Ochoa A., Ostrand-Rosenberg S., Rodriguez P. C., Sica A., Umansky V., Vonderheide R. H., Gabrilovich D. I. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nature Communications, 2016, vol. 7, art. 12150. https://doi.org/10.1038/ncomms12150
81. Titov L. P. Regulation of the expression of the immune system genes and its evaluation by microarrays. 90 let v avangarde mikrobiologicheskoi nauki Belarusi: sbornik trudov Respublikanskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem, posvyashchennoi 125-letiyu so dnya rozhdeniya B. Ya. El’berta (Minsk, 18 dekabrya 2015 g.) [90 years in the vanguard of the microbiological science of Belarus: a collection of works of the Republican scientific and practical conference with international participation, dedicated to the 125th anniversary of the birth of B. Ya. Elbert (Minsk, December 18, 2015)]. Minsk, 2015, pp. 144–163 (in Russian).
82. Titov L. P. Micro-RNAs: a new class of regulatory molecules of immune response and infectious processes. Sovremennye problemy infektsionnoi patologii cheloveka: sbornik nauchnykh trudov [Current problems of human infectious pathology: scientific works collection]. Minsk, 2012, iss. 5, pp. 256–261 (in Russian).
83. Goncharov A. E., Titov L. P. Immunobiological effect of DNA sequences of bacteria of the genus Klebsiella, containing CpG motifs, on monocytic dendritic cells. Zdravookhranenie = Healthcare, 2007, no. 11, pp. 9–12 (in Russian).
84. Goncharov A. E., Titov L. P., Romanova I. V., Drakina S. A. Characteristic expression of costimulatory and adhesion molecules of myeloid and plasmacytoid dendritic cells in patients with multiple sclerosis. Doklady Natsional’noi akademii nauk Belarusi = Reports of the National Academy of Sciences of Belarus, 2010, vol. 54, no. 6, pp. 82–88 (in Russian).
85. Titov L. P., Krylov V. P., Hancharou A. Y., Reut L. I., Shafalovich A. V., Gayduk V. N., Murashko A. S. Mononuclear phagocytes, regulatory T-lymphocytes, circulating stem and endothelial cells in patients with atherosclerotic aortic aneurysm. Zdravookhranenie = Healthcare, 2016, no. 1, pp. 4–10 (in Russian).
86. Titov L. P., Goncharov A. E., Skryagina E. M., Shpakovskaya N. S., Antonova N. P., Zalutskaya O. M., Novokhat’ko T. S. Immunophysiological and clinical efficiency of immunotherapy of patients with multiresistant tuberculosis of lungs by nanovaccine based on autologous monocytic dendritic cells. Zdravookhranenie = Healthcare, 2012, no. 1, pp. 53–60 (in Russian).
87. Goncharov A. E., Titov L. P., Koshelev S. V., Putyrskii L. A., Dubrovskii A. Ch., Romanova I. V., Kosheleva M. I., Shapoval E. V., Smolyakova R. M., Besman E. V. Anti-relapse immunotherapy of patients with breast cancer using autologous dendritic cell-based vaccine. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seriya meditsinskikh navuk = Proceedings of the National Academy of Sciences of Belarus. Medical series, 2014, no. 3, pp. 4–19 (in Russian).
88. Ferlazzo G., Moretta L. Dendritic cell-based immunotherapy of cancer: current pitfalls and challenges. Dendritic Cells: Types, Life Cycles and Biological Functions. New York, Nova Science Publ., 2010, pp. 179–185.
89. Adorini L., Penna G. Induction of tolerogenic dendritic cells by vitamin D receptor agonists. Dendritic Cells. Berlin, Springer-Verlag Publ., 2009, pp. 251–273.
90. Hilkens C. M., Isaacs J. D. Tolerogenic dendritic cell therapy for rheumatoid arthritis: where are we now? Clinical and Experimental Immunology, 2013, vol. 172, no. 2, pp. 148–157. https://doi.org/10.1111/cei.12038
Review
For citations:
Titov L.P. MONOCYTES, MACROPHAGES, DENDRITIC AND MYELOID SUPPRESSOR CELLS: GENESIS, CLASSIFICATION, IMMUNOBIOLOGICAL PROPERTIES. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2018;15(3):363-382. (In Russ.) https://doi.org/10.29235/1814-6023-2018-15-3-363-382