MOLECULAR-GENETIC MARKERS OF HIGH-DIFFERENTIATED FORMS OF THYROID CANCER
https://doi.org/10.29235/1814-6023-2018-15-2-244-256
Abstract
Keywords
About the Authors
H. A. TuzavaBelarus
Hanna A. Tuzava – Senior researcher.
3/3, P. Browka Str., 220013, Minsk.
M. L. Lushchyk
Belarus
Maxim L. Lushchyk – Ph. D. (Med.), Assistant Professor.
3/3, P. Browka Str., 220013, Minsk.
L. I. Danilova
Belarus
Larisa I. Danilova – D. Sc. (Med.), Professor, Head of the Department.
3/3, P. Browka Str., 220013, Minsk.
References
1. Okeanov A. E., Moiseev P. I., Evmenenko A. A., Levin L. F. 25 years contrary cancer. The successes and challenges of cancer control in Belarus for the years 1990–2014. Minsk, Republican Scientific Medical Library, 2016. 415 p. (in Russian).
2. Leonova T. A., Drozd V. M., Mityukova E. A., Platonova T. Yu., Lushchik M. L., Okulevich N. M. The prevalence of thyroid diseases in the Gomel region on the basis of the results of screening young people.Lechebnoe delo [Therapeutics], 2013, no. 5, pp. 58−62 (in Russian).
3. Lushchik M. L., Drozd V. M., Branovan I., Demidchik Yu. E. Cancer of thyroid gland: contemporary overview of the problem. Le- chebnoe delo [Therapeutics], 2013, no. 5, pp. 48−53 (in Russian).
4. Watanabe S. Horizons in cancer research. New York, Nova biomedical, 2015, vol. 55. 175 p.
5. Molinaro E., Romei C., Biagini A., Sabini E., Agate L., Mazzeo S., Materazzi G., Sellari-Franceschini S., Ribechini A., Torregrossa L., Basolo F., Vitti P., Elisei R. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies. Nature Reviews Endocrinology, 2017, vol. 13, no. 11, pp. 644−660. DOI: 10.1038/nrendo.2017.76
6. Drozd V. M., Lushchik M. L., Polyanskaya O. N., Fridman M. V., Demidchik Y. E., Lyshchik A. P., Biko J., Reiners C., Shibata Y., Saenko V. A., Yamashita S. The usual ultrasonographic features of thyroid cancer are less frequent in small tumors that develop after a long latent period after the Chernobyl radiation release accident. Thyroid, 2009, vol. 19, no. 7, pp. 725−734. DOI: 10.1089/thy.2008.0238
7. Valderrabano P., McIver B. Evaluation and management of indeterminate thyroid nodules: the revolution of risk stratification beyond cytological diagnosis. Cancer Control, 2017, vol. 24, no. 5, 14 p. DOI: 10.1177/1073274817729231
8. Li P., Liu P., Zhang H. Ultrasonic diagnosis for thyroid Hürthle cell tumor. Cancer Biomarkers, 2017, vol. 20, no. 3, pp. 235−240. DOI: 10.3233/CBM-160544
9. Valderrabano P., Khazai L., Thompson Z. J., Leon M. E., Otto K. J., Hallanger-Johnson J. E., Wadsworth J. T., Wenig B. M., Chung C. H., Centeno B. A., McIver B. Cancer risk stratification of indeterminate thyroid nodules: A cytological approach. Thyroid, 2017, vol. 27, no. 10, pp. 1277−1284. DOI: 10.1089/thy.2017.0221
10. Lushchik M. L., Verenich K. A., Tuzova A. A. Method of fine needle aspiration biopsy and evaluation of the quality of cytological examination of thyroid gland obtained samples. Sakharovskie chteniya 2012 goda: ekologicheskie problemy XXI veka: materialy 12-i mezhdunarodnoi nauchnoi konferentsii (17−18 maya 2012 goda, Minsk) [Sakharov Readings 2012: environmental problems of the XXI century, 17−18 May, 2012, Minsk]. Minsk, International State Environmental University named after A. D. Sakharov, 2012, pp. 48−49 (in Russian).
11. Nikiforov Y. E., Nikiforova M. N. Molecular genetics and diagnosis of thyroid cancer. Nature Reviews Endocrinology, 2011, vol. 7, no. 10, pp. 569−580. DOI: 10.1038/nrendo.2011.142
12. Yang S.-H., Sharrocks A. D., Whitmarsh A. J. MAP kinase signaling cascades and transcriptional regulation. Gene, 2013, vol. 513, no. 1, pp. 1−13. DOI: 10.1016/j.gene.2012.10.033
13. Dongyue S., Yang L., Tao S. Knockdown of IQGAP1 inhibits proliferation and epithelial-mesenchymal transition by Wnt/β-catenin pathway in thyroid cancer. OncoTargets and Therapy, 2017, vol. 10, pp. 1549−1559. DOI: 10.2147/ott.s128564
14. Brehar A. C., Brehar F. M., Bulgar A. C., Dumitrache C. Genetic and epigenetic alterations in differentiated thyroid carcinoma. Journal of Medicine and Life, 2013, vol. 6, no. 4, pp. 403–408.
15. Davies H., Bignell G. R., Cox C., Stephens P., Edkins S., Clegg S., Teague J., Woffendin H., Garnett M. J., Bottomley W., Davis N., Dicks E., Ewing R., Floyd Y., Gray K., Hall S., Hawes R., Hughes J., Kosmidou V., Menzies A., Mould C., Parker A., Stevens C., Watt S., Hooper S., Wilson R., Jayatilake H., Gusterson B. A., Cooper C., Shipley J., Hargrave D., Pritchard-Jones K., Maitland N., Chenevix-Trench G., Riggins G. J., Bigner D. D., Palmieri G., Cossu A., Flanagan A., Nicholson A., Ho J. W., Leung S. Y., Yuen S. T., Weber B. L., Seigler H. F., Darrow T. L., Paterson H., Marais R., Marshall C. J., Wooster R., Stratton M. R., Futreal P. A. Mutations of the BRAF gene in human cancer. Nature, 2002, vol. 417, no. 6892, pp. 949−954. DOI: 10.1038/nature00766
16. Nikiforov Y. E. Thyroid carcinoma: molecular pathways and therapeutic targets. Modern Pathology, 2008, vol. 21, suppl. 2, pp. S37−S43. DOI: 10.1038/modpathol.2008.10
17. Kimura E. T., Nikiforova M. N., Zhu Z., Knauf J. A., Nikiforov Y. E., Fagin J. A. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Research, 2003, vol. 63, no. 7, pp. 1454–1457.
18. Cohen Y., Xing M., Mambo E., Guo Z., Wu G., Trink B., Beller U., Westra W. H., Ladenson P. W., Sidransky D. BRAF mutation in papillary thyroid carcinoma. Journal of the National Cancer Institute, 2003, vol. 95, no. 8, pp. 625–627. DOI: 10.1093/jnci/95.8.625
19. Man’kovskaya S. V., Demidchik Yu. E., Saenko V. A., Yamasita S. Frequency of BRAF mutation in papillary thyroid cancer in adults. Vestnik Vitebskogo gosudarstvennogo meditsinskogo universiteta = Vestnik of Vitebsk State Medical University, 2008, vol. 7, no.3, pp. 62–67 (in Russian).
20. Yip L., Nikiforova M. N., Carty S. E., Yim J. H., Stang M. T., Tublin M. J., Lebeau S. O., Hodak S. P., Ogilvie J. B., Nikiforov Y. E. Optimizing surgical treatment of papillary thyroid carcinoma associatedwith BRAF mutation. Surgery, 2009, vol. 146, no. 6, pp. 1215–1223. DOI: 10.1016/j.surg.2009.09.011
21. Dong S. Y., Zeng R. C., Jin L. P., Yang F., Zhang X. J., Yao Z. H., Zhang X. H., Wang O. C. BRAFV600E mutation is not associated with central lymph node metastasis in all patients with papillary thyroid cancer: Different histological subtypes and preoperative lymph node status should be taken into account. Oncology Letters, 2017, vol. 14, no. 4, pp. 4122–4134. DOI: 10.3892/ol.2017.6694
22. Wang P., Lun Y., Fu Y., Wang F., Zhao S., Wang Y., Hou X. Generation of a potential prognostic matrix for papillary thyroid cancer that assesses age, tumor size, transforming growth factor-β, and BRAFV600E mutation. Oncology Research and Treatment, 2017, vol. 40, no. 10, pp. 586–592. DOI: 10.1159/000477909
23. Goedert L., Plaça J. R., Fuziwara C. S. Machado M. C., Plaça D. R., Almeida P. P., Sanches T. P., Santos J. F., Corveloni A. C., Pereira I. E., de Castro M. M., Kimura E. T., Silva W. A., Espreafico E. M. Identification of long noncoding RNAs deregulated in papillary thyroid cancer and correlated with BRAFV600E mutation by bioinformatics integrative analysis. Scientific Reports, 2017, vol. 7, no. 1, pp. 1662–1683. DOI: 10.1038/s41598-017-01957-0
24. Xing M., Westra W. H., Tufano R. P., Cohen Y., Rosenbaum E., Rhoden K. J., Carson K. A., Vasko V., Larin A., Tallini G., Tolaney S., Holt E. H., Hui P., Umbricht C. B., Basaria S., Ewertz M., Tufaro A. P., Califano J. A., Ringel M. D., Zeiger M. A., Sidransky D., Ladenson P. W. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. Journal of Clinical Endocrinology and Metabolism, 2005, vol. 90, no. 12, pp. 6373–6379. DOI: 10.1210/jc.2005-0987
25. Kim T. Y., Kim W. B., Rhee Y. S., Song J. Y., Kim J. M., Gong G., Lee S., Kim S. Y., Kim S. C., Hong S. J., Shong Y. K. The BRAF mutation is useful for prediction of clinical recurrence in low-riskpatients with conventional papillary thyroid carcinoma. Clinical Endocrinology, 2006, vol. 65, no. 3, pp. 364–368. DOI: 10.1111/j.1365-2265.2006.02605.x
26. Riesco-Eizaguirre G., Gutiérrez-Martinez P., Garcia-Cabezas M. A., Nistal M., Santisteban P. The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I- targeting to the membrane. Endocrine Related Cancer, 2006, vol. 13, no. 1, pp. 257–269. DOI: 10.1677/erc.1.01119
27. Trovisco V., Vieira de Castro I., Soares P., Máximo V., Silva P., Magalhães J., Abrosimov A., Guiu X. M., Sobrinho-Simões M. BRAF mutations are associated with some histological types of papillary thyroid carcinoma. The Journal of Pathology, 2004, vol. 202, no. 2, pp. 247–251. DOI: 10.1002/path.1511
28. Carta C., Moretti S., Passeri L., Barbi F., Avenia N., Cavaliere A., Monacelli M., Macchiarulo A., Santeusanio F., Tartaglia M., Puxeddu E. Genotyping of an Italian papillary thyroid carcinoma cohort revealed high prevalence of BRAF mutations, absence of RAS mutations and allowed the detection of a new mutation of BRAF oncoprotein (BRAF(V599lns). Clinical Endocrinology, 2006, vol. 64, no. 1, pp. 105–109. DOI: 10.1111/j.1365-2265.2005.02401.x
29. Hou P., Liu D., Xing M. Functional characterization of the T1799-1801del and A1799-1816ins BRAF mutations in papillary thyroid cancer. Cell Cycle, 2007, vol. 6, no. 3, pp. 377–379. DOI: 10.4161/cc.6.3.3818
30. Ciampi R., Knauf J. A., Kerler R., Gandhi M., Zhu Z., Nikiforova M. N., Rabes H. M., Fagin J. A., Nikiforov Y. E. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. Journal of Clinical Investigation, 2005, vol. 115, no. 1, pp. 94–101. DOI: 10.1172/jci23237
31. Antonelli A., Fallahi P., Ulisse S., Ferrari S. M., Minuto M., Saraceno G., Santini F., Mazzi V., D’Armiento M., Miccoli P. New targeted therapies for anaplastic thyroid cancer. Anti-Cancer AgentsinMedical Chemistry, 2012, vol. 12, no. 1, pp. 87–93. DOI: 10.2174/187152012798764732
32. Buffet C., Hecale-Perlemoine K., Bricaire L., Dumont F., Baudry C., Tissier F., Bertherat J., Cochand-Priollet B., Raffin-Sanson M. L., Cormier F., Groussin L. DUSP5 and DUSP6, two ERK specific phosphatases, are markers of a higher MAPK signaling activation in BRAF mutated thyroid cancers. PLoS One, 2017, vol. 12, no. 9, p. e0184861. DOI: 10.1371/journal.pone.0184861
33. Rodrigues A. C., Penna G., Rodrigues E. Castro P., Sobrinho-Simões M., Soares P. The genetics of papillary microcarcinomas of the thyroid: diagnostic and prognostic implications. Current Genomics, 2017, vol. 18, no. 3, pp. 244–254. DOI: 10.2174/138920291866617010 5094459
34. Suarez H. G. Genetic alterations in epithelial human thyroid tumours.Clinical Endocrinology, 1998, vol. 48, no. 5, pp. 531–546. DOI: 10.1046/j.1365-2265.1998.00443.x
35. Bounacer A., Wicker R., Caillou B., Cailleux A. F., Sarasin A., Schlumberger M., Suárez H. G. High prevalence of activating ret protooncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene, 1997, vol. 15, no. 11, pp. 1263–1273. DOI: 10.1038/sj.onc.1200206
36. Ishizaka Y., Kobayashi S., Ushijima T., Hirohashi S., Sugimura T., Nagao M. Detection of RET/PTC transcripts in thyroid adenomas an adenomatous goiter by an RT-PTC method. Oncogene, 1991, vol. 6, no. 9, pp. 1667–1672.
37. Fugazzola L., Pilotti S., Pinchera A., Vorontsova T. V., Mondellini P., Bongarzone I., Greco A., Astakhova L., Butti M. G., Demidchik E. P., Pacini F., Pierotti M. A. Oncogenic rearrangements of the RET protooncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident. Cancer Research, 1995, vol. 55, no. 23, pp. 5617–5620.
38. Klugbauer S., Lengfelder E., Demidchik E. P., Rabes H. M. High prevalence of RET rearrangement in thyroid tumors of children from Belarus after the Chernobyl reactor accident. Oncogene, 1995, vol. 11, no. 12, pp. 2459–2467.
39. Nikiforov Y. E., Rowland J. M., Bove K. E., Monforte-Munoz H., Fagin J. A. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Research, 1997, vol. 57, no. 9, pp. 1690–1694.
40. Mizuno T., Iwamoto K. S., Kyoizumi S., Nagamura H., Shinohara T., Koyama K., Seyama T., Hamatani K. Preferential induction of RET/PTC1 rearrangement by X-ray irradiation. Oncogene, 2000, vol. 19, no. 3, pp. 438–443. DOI: 10.1038/sj.onc.1203343
41. Khod’kov K. A., Kosinets A. N., Khessman U. Molecular-genetic aspects of papillary thyroid cancer. Vestnik Vitebskogo gosudarstvennogo meditsinskogo universiteta = Vestnik of Vitebsk State Medical University, 2004, vol. 3, no. 4, pp. 24–29 (in Russian).
42. Caudill C. M., Zhu Z., Ciampi R., Stringer J. R., Nikiforov Y. E. Dose-dependent generation of RET/PTC in human thyroid cells after in vitro exposure to gamma-radiation: a model of carcinogenic chromosomal rearrangement induced by ionizing radiation. Journal of Clinical Endocrinology and Metabolism, 2005, vol. 90, no. 4, pp. 2364–2369. DOI: 10.1210/jc.2004-1811
43. Song Y. S., Lim J. A., Min H. S. Kim M. J., Choi H., Cho S. W., Moon J. H., Yi K. H., Park D. J., Cho B. Y., Park Y. J. Changes in the clinicopathological characteristics and genetic alterations of follicular thyroid cancer. European Journal of Endocrinology, 2017, vol. 17, no. 6, pp. 465–473. DOI: 10.1530/eje-17-0456
44. Kroll T. G., Sarraf P., Pecciarini L., Chen C. J., Mueller E., Spiegelman B. M., Fletcher J. A. PAX8-PPARγ1 fusion oncogene in human thyroid carcinoma. Science,2000, vol. 289, no. 5483, pp. 1357–1360. DOI: 10.1126/science.289.5483.1357
45. Nikiforova M. N., Lynch R. A., Biddinger P. W., Alexander E. K., Dorn G. W., Tallini G., Kroll T. G., Nikiforov Y. E. RASpoint mutations and PAX8-PPARγ rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. Journal of Clinical Endocrinology and Metabolism, 2003, vol. 88, no. 5, pp. 2318–2326. DOI: 10.1210/jc.2002-021907
46. Castro P., Rebocho A. P., Soares R. J., Magalhaes J., Roque L., Trovisco V., Vieira de Castro I., Cardoso-de-Oliveira M., Fonseca E., Soares P., Sobrinho-Simoes M. PAX8-PPARγ rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. Journal of Clinical Endocrinology and Metabolism, 2006, vol. 91, no. 1, pp. 213–220. DOI: 10.1210/jc.2005-1336
47. Powell J. G., Wang X., Allard B. L. Sahin M., Wang X. L., Hay I. D., Hiddinga H. J., Deshpande S. S., Kroll T. G., Grebe S. K., Eberhardt N. L., McIver B. The PAX8/PPARγ fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probaγ fusion oncoprotein transforms immortalized human thyrocytes through a mechanism proba fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probably involving wild-type PPARγ inhibition. Oncogene, 2004, vol. 23, no. 20, pp. 3634–3641. DOI: 10.1038/sj.onc.1207399
48. Armstrong J., Yang H., Yip L., Ohori N. P., McCoy K. L., Stang M. T., Hodak S. P., Nikiforova M. N., Carty S. E., Nikiforov Y. E. PAX8/PPARγ rearrangement in thyroid nodules predicts follicular-pattern carcinomas, in particular the encapsulated follicular variant of papillary carcinoma. Thyroid, 2014, vol. 24, no. 9. pp. 1369–1374. DOI: 10.1089/thy.2014.0067
49. Cree I. A. Progress and potential of RAS mutation detection for diagnostics and companion diagnostics. Expert Review of Molecular Diagnostics, 2016, vol. 16, no. 10, pp. 1067–1072. DOI:10.1080/14737159.2016.1221345
50. Hobbs G. A., Der C. J., Rossman K. L. RAS isoforms and mutations in cancer at a glance. Journal of Cell Science, 2016, vol. 129, no. 7, pp. 1287–1292. DOI: 10.1242/jcs.182873
51. Haugen B. R., Alexander E. K., Bible K. C., Doherty G. M., Mandel S. J., Nikiforov Y. E., Pacini F., Randolph G. W., Sawka A. M., Schlumberger M., Schuff K. G., Sherman S. I., Sosa J. A., Steward D. L., Tuttle R. M., Wartofsky L. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid, 2016, vol. 26, no. 1, pp. 1–133. DOI: 10.1089/thy.2015.0020
52. Akincilar S. C., Unal B., Tergaonkar V. Reactivation of telomerase in cancer. Cellular and Molecular Life Sciences, 2016, vol. 73, no. 8, pp. 1659–1670. DOI: 10.1007/s00018-016-2146-9
53. Eldholm V., Haugen A., Zienolddiny S. CTCF mediates the TERT enhancer-promoter interactions in lung cancer cells: identification of a novel enhancer region involved in the regulation of TERT gene. International Journal of Cancer, 2013, vol. 134, no. 10, pp. 2305– 2313. DOI: 10.1002/ijc.28570
54. Liu T., Brown T., Juhlin C., Andreasson A., Wang N., Bäckdahl M., Healy J. M., Prasad M. L., Korah R., Carling T., Xu D., Larsson C. The activating TERT promoter mutation C228T is recurrent in subsets of adrenal tumors. Endocrine-Related Cancer, 2014, vol. 21, no. 3, pp. 427–434. DOI: 10.1530/erc-14-0016
55. Xing М., Liu R., Liu X., Murugan A. K., Zhu G., Zeiger M. A., Pai S., Bishop J. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressivepapillary thyroid cancer with highest recurrence. Journal of Clinical Oncology, 2014, vol. 32, no. 25, pp. 2718–2727. DOI: 10.1200/jco.2014.55.5094
56. Liu R., Xing М. TERT promoter mutations in thyroid cancer. Endocrine Related Cancer, 2016, vol. 23, no. 3, pp. 143–155. DOI: 10.1530/ERC-15-0533
57. Shevchenko S. P., Sidorov S. V., Kolesnikov N. N., Gulyaeva L. F. Molecular biology of thyroid carcinoma. Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya: Biologiya, klinicheskaya meditsina [Vestnik of the Novosibirsk State University. Series: Biology, Clinical Medicine], 2011, vol. 9, no. 4, pр. 200–206 (in Russian).
58. Chen Y.-T., Kitabayashi N., Zhou X. T. Fahey T. J., Scognamiglio T. MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Modern Pathology, 2008, vol. 21, no. 9, pp. 1139–1146. DOI: 10.1038/modpathol.2008.105
59. Pishkari S., Paryan M., Hashemi M. J., Baldini E., Mohammadi-Yeganeh S. The role of microRNAs in different types of thyroid carcinoma: a comprehensive analysis to find new miRNA supplementary therapies. Journal of Endocrinological Investigation, 2017, vol. 41, no. 3, pp. 269–283. DOI: 10.1007/s40618-017-0735-6
60. Tuzova A. A., Lushchik M. L., Demidchik Yu. E. An early diagnosis of highly differentiated thyroid cancer – searching for molecular models. ARS Medica. Iskusstvo meditsiny: onkologiya [ARS Medica. Skill of Medicine: Oncology], 2012, no. 9, pp. 145–153 (in Russian).
61. Nikiforova M. N., Nikiforov Y. E. Molecular diagnostics and predictors in thyroid cancer. Thyroid, 2009, vol. 19, no. 12, pp. 1351– 1361. DOI: 10.1089/thy.2009.0240
62. Nikiforov Y. E., Carty S. E., Chiosea S. I., Coyne C., Duvvuri U., Ferris R. L., Gooding W. E., Hodak S. P., LeBeau S. O., Ohori N. P., Seethala R. R., Tublin M. E., Yip L., Nikiforova M. N. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/ suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer, 2014, vol. 120, no. 23, pp. 3627– 3634. DOI: 10.1002/cncr.29038
63. Ali S. Z., Cibas E. S. The Bethesda System for reporting thyroid cytopathology II. Acta Cytologica, 2016, vol. 60, no. 5, pp. 397– 398. DOI: 10.1159/000451071
64. Alsina J., Alsina R., Gulec S. A concise atlas of thyroid cancer next-generation sequencing panel ThyroSeq v. 2. Molecular Imaging and Radionuclide Therapy, 2016, vol. 26, suppl. 1, pp. 102–117. DOI: 10.4274/2017.26.suppl.12
65. Nikiforova M. N., Wald A. I., Roy S., Durso M. B., Nikiforov Y. E. Targeted next generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. Journal of Clinical Endocrinology and Metabolism, 2013, vol. 98, no. 11, pp. E1852–E1860. DOI: 10.1210/jc.2013-2292
66. Duh Q.-Y., Busaidy N. L., Rahilly-Tierney C., Gharib H., Randolph G. A systematic review of the methods of diagnostic accuracy studies of the Afirma gene expression classifier. Thyroid, 2017, vol. 27, no. 10, pp. 1215–1222. DOI: 10.1089/thy.2016.0656
67. Onenerk A. M., Pusztaszeri M. P., Canberk S., Faquin W. C. Triage of the indeterminate thyroid aspirate: What are the options for the practicing cytopathologist? Cancer Cytopathology, 2017, vol. 125, no. 6, suppl., pp. 477–485. DOI: 10.1002/cncy.21828
Review
For citations:
Tuzava H.A., Lushchyk M.L., Danilova L.I. MOLECULAR-GENETIC MARKERS OF HIGH-DIFFERENTIATED FORMS OF THYROID CANCER. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2018;15(2):244-256. (In Russ.) https://doi.org/10.29235/1814-6023-2018-15-2-244-256