1. 25 лет против рака. Успехи и проблемы противораковой борьбы в Беларуси за 1990-2014 годы / А. Е. Океанов [и др.]. − Минск : Респ. науч. мед. б-ка, 2016. − 415 c.
2. Распространенность тиреоидной патологии в Гомельской области на основании результатов скрининга лиц молодого возраста / Т. А. Леонова [и др.] // Лечеб. дело. − 2013. − № 5. − С. 58−62.
3. Рак щитовидной железы: современное состояние проблемы / М. Л. Лущик [и др.] // Лечеб. дело. − 2013. − № 5. − С. 48−53.
4. Watanabe, S. Horizons in cancer research / S. Watanabe. − New York : Nova biomedical, 2015. − Vol. 55. - 175 p.
5. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies / E. Molinaro [et al.] // Nature Reviews Endocrinology. − 2017. − Vol. 13, N 11. − P. 644−660. https://doi.org/10.1038/nrendo.2017.76
6. The usual ultrasonographic features of thyroid cancer are less frequent in small tumors that develop after a long latent period after the Chernobyl radiation release accident / V. M. Drozd [et al.] // Thyroid. − 2009. − Vol. 19, N 7. − P. 725−734. https://doi.org/10.1089/thy.2008.0238
7. Valderrabano, P. Evaluation and management of indeterminate thyroid nodules: the revolution of risk stratification beyond cytological diagnosis / P. Valderrabano, B. McIver // Cancer Control. − 2017. − Vol. 24, N 5. − 14 p. https://doi.org/10.1177/1073274817729231
8. Li, P. Ultrasonic diagnosis for thyroid Hürthle cell tumor / P. Li, P. Liu, H. Zhang // Cancer Biomark. − 2017. − Vol. 20, N 3. − P. 235−240. https://doi.org/10.3233/CBM-160544
9. Cancer risk stratification of indeterminate thyroid nodules: a cytological approach / P. Valderrabano [et al.] // Thyroid. − 2017. − Vol. 27, N10. − P. 1277−1284. https://doi.org/10.1089/thy.2017.0221
10. Лущик, М. Л. Метод тонкоигольной аспирационной биопсии и оценка качества цитологического исследования образцов щитовидной железы, полученных на его основе / М. Л. Лущик, К. А. Веренич, А. А. Тузова // Сахаровские чтения 2012 года: эколо гические проблемы XXI века : материалы 12-й науч.-практ. конф., 17-18 мая 2012 г., г. Минск / Междунар. гос. экол. ун-т им. А. Д. Сахарова ; под общ. ред. С. П. Кундас, С. С. Позняк, Н. А. Лысухо. − Минск, 2012. − C. 48−49.
11. Nikiforov, Y. E. Molecular genetics and diagnosis of thyroid cancer / Y. E. Nikiforov, M. N. Nikiforova // Nature Reviews Endocri- nology. − 2011. − Vol. 7, N 10. − P. 569−580. https://doi.org/10.1038/nrendo.2011.142
12. Yang, S.-H. MAP kinase signaling cascades and transcriptional regulation / S.-H. Yang, A. D. Sharrocks, A. J. Whitmarsh // Gene. − 2013. − Vol. 513, N 1. − P. 1−13. https://doi.org/10.1016/j.gene.2012.10.033
13. Dongyue S. Knockdown of IQGAP1 inhibits proliferation and epithelial-mesenchymal transition by Wnt/β-catenin pathway in thyroid cancer / S. Dongyue, L. Yang, S. Tao // OncoTargets and Therapy. − 2017. − Vol. 10. − P. 1549−1559. https://doi.org/10.2147/ott.s128564
14. Genetic and epigenetic alterations in differentiated thyroid carcinoma / A. C. Brehar [et al.] // J. of Medicine and Life. − 2013. − Vol. 6, N 4. − P. 403-408.
15. Mutations of the BRAF gene in human cancer / H. Davies [et al.] // Nature. − 2002. − Vol. 417, N 6892. − P. 949−954. https://doi.org/10.1038/nature00766
16. Nikiforov, Y. E. Thyroid carcinoma: molecular pathways and therapeutic targets / Y. E. Nikiforov // Modern Pathology. − 2008. − Vol. 21, Suppl. 2. − P. S37−S43. https://doi.org/10.1038/modpathol.2008.10
17. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma / E. T. Kimura [et al.] // Cancer Research. − 2003. − Vol. 63, N 7. − P. 1454-1457.
18. BRAF mutation in papillary thyroid carcinoma / Y. Cohen [et al.] // J. of the National Cancer Institute.− 2003. − Vol. 95, N 8. − P. 625-627. https://doi.org/10.1093/jnci/95.8.625
19. Частота мутации гена BRAF в папиллярном раке щитовидной железы у взрослых / С. В. Маньковская [и др.] // Вестн. Витеб. гос. мед. ун-та. − 2008. − T. 7, № 3.− C. 62-67.
20. Optimizing surgical treatment of papillary thyroid carcinoma associated with BRAF mutation / L. Yip [et al.] // Surgery. − 2009. − Vol. 146, N 6. − P. 1215-1223. https://doi.org/10.1016/j.surg.2009.09.011
21. BRAFV600E mutation is not associated with central lymph node metastasis in all patients with papillary thyroid cancer: Different histological subtypes and preoperative lymph node status should be taken into account / S. Y. Dong [et al.] // Oncology Letters. − 2017. − Vol. 14, N 4. − P. 4122-4134. https://doi.org/10.3892/ol.2017.6694
22. Generation of a potential prognostic matrix for papillary thyroid cancer that assesses age, tumor size, transforming growth Factor-β, and BRAFV600E mutation / P. Wang [et al.] // Oncology Research and Treatment.− 2017. − Vol. 40, N 10. − P. 586-592. https://doi.org/10.1159/000477909
23. Identification of long noncoding RNAs deregulated in papillary thyroid cancer and correlated with BRAFV600E mutation by bioinformatics integrative analysis / L. Goedert [et al.] // Scientific Reports. − 2017. − Vol. 7, N 1. − P. 1662-1683. https://doi.org/10.1038/s41598-017-01957-0
24. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer / M. Xing [et al.] // J. of Clinical Endocrinology and Metabolism. − 2005. − Vol. 90, N 12. − P. 6373-6379. https://doi.org/10.1210/jc.2005-0987
25. The BRAF mutation is useful for prediction of clinical recurrence in low-risk patients with conventional papillary thyroid carcinoma / T. Y. Kim [et al.] // Clinical Endocrinology. − 2006. − Vol. 65, N 3. − P. 364-368. https://doi.org/10.1111/j.1365-2265.2006.02605.x
26. The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I- targeting to the membrane / G. Riesco-Eizaguirre [et al.] // Endocrine Related Cancer. − 2006. − Vol. 13, N 1. − P. 257-269. https://doi.org/10.1677/erc.1.01119
27. BRAF mutations are associated with some histological types of papillary thyroid carcinoma / V. Trovisco [et al.] // J. of Pathology.− 2004. − Vol. 202, N 2. − P. 247-251. https://doi.org/10.1002/path.1511
28. Genotyping of an Italian papillary thyroid carcinoma cohort revealed high prevalence of BRAF mutations, absence of RAS mutations and allowed the detection of a new mutation of BRAF oncoprotein (BRAF(V599lns) / C. Carta [et al.] // Clinical Endocrinology. − 2006. − Vol. 64, N 1. − P. 105-109. https://doi.org/10.1111/j.1365-2265.2005.02401.x
29. Hou, P. Functional characterization of the T1799-1801del and A1799-1816ins BRAF mutations in papillary thyroid cancer / P. Hou, D. Liu, M. Xing // Cell Cycle. − 2007. − Vol. 6, N 3. − P. 377-379. https://doi.org/10.4161/cc.6.3.3818
30. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer / R. Ciampi // J. of Clinical Investigation. − 2005. − Vol. 115, N 1. − P. 94-101. https://doi.org/10.1172/jci23237
31. New targeted therapies for anaplastic thyroid cancer / A. Antonelli [et al.] // Anti-CancerAgents in Medicinal Chemistry. − 2012. − Vol. 12, N 1. − P. 87-93. https://doi.org/10.2174/187152012798764732
32. DUSP5 and DUSP6, two ERK specific phosphatases, are markers of a higher MAPK signaling activation in BRAF mutated thyroid cancers [Electronic resource] / C. Buffet [et al.] // PLoS One. − 2017. − Vol. 12, N 9. - P. e0184861. https://doi.org/10.1371/journal.pone.0184861
33. The genetics of papillary microcarcinomas of the thyroid: diagnostic and prognostic implications / A. C.Rodrigues [et al.] // Current Genomics. − 2017. − Vol. 18, N 3. − P. 244-254. https://doi.org/10.2174/1389202918666170105094459
34. Suarez, H. G. Genetic alterations in epithelial human thyroid tumours / H. G. Suarez // Clinical Endocrinology. − 1998. − Vol. 48, N 5. − P. 531-546. https://doi.org/10.1046/j.1365-2265.1998.00443.x
35. High prevalence of activating ret protooncogene rearrangements, in thyroid tumors from patients who had received external radiation / A. Bounacer [et al.] // Oncogene. − 1997. − Vol. 15, N 11. − P. 1263−1273. https://doi.org/10.1038/sj.onc.1200206
36. Detection of RET/PTC transcripts in thyroid adenomas an adenomatous goiter by an RT-PTC method / Y. Ishizaka [et al.] // Oncogene. − 1991. − Vol. 6, N 9. − P. 1667-1672.
37. Oncogenic rearrangements of the RET protooncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident / L. Fugazzola [et al.] // Cancer Research. − 1995. − Vol. 55, N 23. − P. 5617-5620.
38. High prevalence of RET rearrangement in thyroid tumors of children from Belarus after the Chernobyl reactor accident / S. Klugbauer [et al.] // Oncogene. − 1995. − Vol. 11, N 12. − P. 2459-2467.
39. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children / Y. E. Nikiforov [et al.] // Cancer Research. − 1997. − Vol. 57, N 9. − P. 1690-1694.
40. Preferential induction of RET/PTC1 rearrangement by X-ray irradiation / T. Mizuno [et al.] // Oncogene. − 2000. − Vol. 19, N 3. − P. 438-443. https://doi.org/10.1038/sj.onc.1203343
41. Ходьков, К. А. Молекулярно-генетические аспекты папиллярного рака щитовидной железы / К. А. Ходьков, А. Н. Косинец, У. Хессман // Вестн. Витеб. гос. мед.ун-та. − 2004. − Т. 3, № 4. − P. 24-29.
42. Dose-dependent generation of RET/PTC in human thyroid cells after in vitro exposure to gamma-radiation: a model of carcinogenic chromosomal rearrangement induced by ionizing radiation / C. M. Caudill [et al.] // J. of Clinical Endocrinology and Metabolism. − 2005. − Vol. 90, N 4. − P. 2364-2369. https://doi.org/10.1210/jc.2004-1811
43. Changes in the clinicopathological characteristics and genetic alterations of follicular thyroid cancer / Y. S. Song [et al.] // Europ. J. of Endocrinology. − 2017. − Vol. 17, N 6. − P. 465-473. https://doi.org/10.1530/eje-17-0456
44. PAX8-PPARγ1 fusion oncogene in human thyroid carcinoma / T. G. Kroll [et al.] // Science. − 2000. − Vol. 289, N 5483. − P. 1357- 1360. https://doi.org/10.1126/science.289.5483.1357
45. RASpoint mutations and PAX8-PPARγrearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma / M. N. Nikiforova [et al.] // J. of Clinical Endocrinology and Metabolism. − 2003. − Vol. 88, N 5. − P. 2318-2326. https://doi.org/10.1210/ jc.2002-021907
46. PAX8-PPAγ rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma / P. Castro [et al.] // J. of Clinical Endocrinology and Metabolism. − 2006. − Vol. 91, N 1. − P. 213-220. https://doi.org/10.1210/jc.2005-1336
47. The PAX8/PPARγ fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probably involving wild-type PPARγ inhibition / J. G. Powell [et al.] // Oncogene. − 2004. − Vol. 23, N 20. − P. 3634-3641. https://doi.org/10.1038/sj.onc.1207399
48. PAX8/PPARγ rearrangement in thyroid nodules predicts follicular-pattern carcinomas, in particular the encapsulated follicular variant of papillary carcinoma / J. Armstrong [et al.] // Thyroid. − 2014. − Vol. 24, N 9. − P. 1369-1374. https://doi.org/10.1089/thy.2014.0067
49. Cree, I. A. Progress and potential of RAS mutation detection for diagnostics and companion diagnostics / I. A. Cree // Expert Review of Molecular Diagnostics. - 2016. - Vol. 16, N 10. - P. 1067-1072. https://doi.org/10.1080/14737159.2016.1221345
50. Hobbs, G. A. RAS isoforms and mutations in cancer at a glance / G. A. Hobbs, C. J. Der, K. L. Rossman // J. of Cell Science. - 2016. - Vol. 129, N 7. - P. 1287-1292. https://doi.org/10.1242/jcs.182873
51. 2015 Аmerican thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the american thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer / B. R. Haugen [et al.] // Thyroid. − 2016. − Vol. 26, N 1. − P. 1-133. https://doi.org/10.1089/thy.2015.0020
52. Akincilar, S. C. Reactivation of telomerase in cancer / S. C. Akincilar, B. Unal, V. Tergaonkar // Cellular and Molecular Life Sciences. − 2016. − Vol. 73, N 8. − P. 1659-1670. https://doi.org/10.1007/s00018-016-2146-9
53. Eldholm, V. CTCF mediates the TERT enhancer-promoter interactions in lung cancer cells: identification of a novel enhancer region involved in the regulation of TERT gene / V. Eldholm, A. Haugen, S. Zienolddiny // Intern. J. of Cancer. − 2013. − Vol. 134, N 10. − P. 2305- 2313. https://doi.org/10.1002/ijc.28570
54. The activating TERT promoter mutation C228T is recurrent in subsets of adrenal tumors / T. Liu [et al.] // Endocrine-Related Cancer. − 2014. − Vol. 21, N 3. − P. 427-434. https://doi.org/10.1530/erc-14-0016
55. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence / М. Xing [et al.] // J. of Clinical Oncology. − 2014. − Vol. 32, N 25. − P. https://doi.org/−2727.DOI: 10.1200/jco.2014.55.5094
56. Liu, R. TERT promoter mutations in thyroid cancer / R. Liu, М. Xing // Endocrine-Related Cancer. − 2016. − Vol. 23, N 3. − P. 143-155. https://doi.org/10.1530/ERC-15-0533
57. Молекулярная биология тиреоидной карциномы / С. П. Шевченко [и др.] // Вестн. Новосиб. гос. ун-та. Сер. Биология, клин. медицина. − 2011. − T. 9, № 4. − C. 200-206.
58. MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma / Y.-T. Chen [et al.] // Modern Pathology. - 2008. - Vol. 21, N 9. - P. 1139-1146. https://doi.org/10.1038/modpathol.2008.105
59. The role of microRNAs in different types of thyroid carcinoma: a comprehensive analysis to find new miRNA supplementary therapies / S. Pishkari [et al.] // J. of Endocrinological Investigation. - 2017. - Vol. 41, N 3. - P. 269-283. https://doi.org/10.1007/s40618-017-0735-6
60. Тузова, А. А. Ранняя диагностика высокодифференцированного рака щитовидной железы - поиск молекулярных мишеней / А. А. Тузова, М. Л. Лущик, Ю. Е. Демидчик // ARSMedica. Искусство медицины: онкология. − 2012. − № 9. − С. 145−153.
61. Nikiforova, M. N. Molecular diagnostics and predictors in thyroid cancer / M. N. Nikiforova, Y. E. Nikiforov // Thyroid. − 2009. − Vol. 19, N 12. − P. 1351-1361. https://doi.org/10.1089/thy.2009.0240
62. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay / Y. E. Nikiforov [et al.] // Cancer. − 2014. − Vol. 120, N 23. − P. 3627-3634. https://doi.org/10.1002/ cncr.29038
63. Ali, S. Z. The Bethesda System for reporting thyroid cytopathology II / S. Z.Ali, E. S. Cibas // Acta Cytologica. − 2016. − Vol. 60, N 5. − P. 397−398. https://doi.org/10.1159/000451071
64. Alsina, J. A concise atlas of thyroid cancer next-generation sequencing panel ThyroSeq v. 2 / J. Alsina, R. Alsina, S. A. Gulec // Molecular Imaging and Radionuclide Therapy. − 2016. − Vol. 26, Suppl. 1. − P. 102-117. https://doi.org/10.4274/2017.26.suppl.12
65. Targeted next generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer / M. N. Nikiforova [et al.] // J. of Clinical Endocrinology and Metabolism. − 2013. − Vol. 98, N 11. − P. E1852-E1860. https://doi.org/10.1210/jc.2013-2292
66. A systematic review of the methods of diagnostic accuracy studies of the Afirma gene expression classifier / Q.-Y. Duh [et al.] // Thyroid. − 2017. − Vol. 27, N 10. − P. 1215-1222. https://doi.org/10.1089/thy.2016.0656
67. Triage of the indeterminate thyroid aspirate: What are the options for the practicing cytopathologist? / A. M. Onenerk [et al.] // Cancer Cytopathology. − 2017. − Vol. 125, N 6, Suppl. − P. 477-485. https://doi.org/10.1002/cncy.21828