Preview

Proceedings of the National Academy of Sciences of Belarus, Medical series

Advanced search

EFFECT OF ALPHA-COBRATOXIN ON THE OXIDATIVE STRESS INDUCED BY A SERUM-FREE MEDIUM IN C6 GLIOMA CELLS

https://doi.org/10.29235/1814-6023-2018-15-2-199-206

Abstract

The model studies on C6 glioma cells showed that the role of nicotinic acetylcholine receptors (nAChR) in the  regulation of the redox balance varies under different cultivation conditions. In a serum-free medium, the inhibitor of nAXP  alpha-cobratoxin alleviates the oxidative stress that is manifested in an increase in the activity of superoxide dismutase and  catalase, the level of reduced glutathione and in a decrease in the concentration of malonic dialdehyde.

About the Authors

T. I. Terpinskaya
Institute of Physiology of the National Academy of Sciences of Belarus
Belarus

Tatiana I. Terpinskaya – Ph. D. (Biol), Leading researcher.


28, Akademicheskaya Str., 220072, Minsk.



A. V. Osipov
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences.
Russian Federation

Alexey V. Osipov – Ph. D. (Chem.), Senior researcher. 

16/10, Miklouho-Maclai Str.,  117997, Moscow.



S. B. Kondrashova
Institute of Physiology of the National Academy of Sciences of Belarus
Belarus

Svetlana B. Kondrashova – Senior researcher. 

28, Akademicheskaya Str., 220072, Minsk.



V. S. Ulashchyk
Institute of Physiology of the National Academy of Sciences of Belarus
Belarus

Vladimir S. Ulashchyk – Academician, D. Sc. (Med.),  Professor, Chief researcher. 

28, Akademicheskaya Str., 220072, Minsk.



Yu. N. Utkin
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences.
Russian Federation

Yuri N. Utkin – D. Sc. (Chem.), Professor, Chief researcher.  

16/10, Miklouho-Maclai Str.,  117997, Moscow.



References

1. Zanetti F., Giacomello M., Donati Y., Carnesecchi S., Frieden M., Barazzone-Argiroffo C. Nicotine mediates oxidative stress and apoptosis through cross talk between NOX1 and Bcl-2 in lung epithelial cells. Free Radical Biology and Medicine, 2014, vol. 76, pp. 173-84. DOI: 10.1016/j.freeradbiomed.2014.08.002

2. Conceição E. P., Peixoto-Silva N., Pinheiro C. R., Oliveira E., Moura E. G., Lisboa P. C. Maternal nicotine exposure leads to higher liver oxidative stress and steatosis in adult rat offspring. Food and Chemical Toxicology, 2015, vol. 78, pp. 52-59. DOI: 10.1016/j.fct.2015.01.025

3. Lan X., Lederman R., Eng J. M., Shoshtari S. S., Saleem M. A., Malhotra A., Singhal P. C. Nicotine induces podocyte apoptosis through increasing oxidative stress. PLoS One, 2016, vol. 11, no. 12, p. e0167071. DOI: 10.1371/journal.pone.0167071

4. Niu X.-M., Lu S. Acetylcholine receptor pathway in lung cancer: new twists to an old story. World Journal of Clinical Oncology, 2014, vol. 5, no. 4, pp. 667-676. DOI: 10.5306/wjco.v5.i4.667

5. Wu Z. S., Cheng H., Jiang Y., Melcher K., Xu H. E. Ion channals gated by acetilcholin by acetylcholine and serotonin: structures, biology, and drug discovery.  Acta Pharmacologica Sinica, 2015, vol. 36, no. 8, pp. 895-907. DOI: 10.1038/ aps.2015.66

6. Rezonzew G., Chumley P., Feng W., Hua P., Siegal G. P., Jaimes E. A. Nicotine exposure and the progression of chronic kidney disease: role of the α7-nicotinic acetylcholine receptor. American Journal of Physiology-Renal Physiology, 2012, vol. 303, no. 2, pp. F304-F312. DOI: 10.1152/ajprenal.00661.2011

7. Moon J. H., Kim S. Y., Lee H. G., Kim S. U., Lee Y. B. Activation of nicotinic acetylcholine receptor prevents the production of reactive oxygen species in fibrillar β amyloid peptide (1-42)-stimulated microglia. Experimental and Molecular Medicine, 2008, vol. 40, no. 1, pp. 11-18. DOI: 10.3858/emm.2008.40.1.11

8. Kamynina A. V., Holmstrom K. M., Koroev D. O., Volpina O. M., Abramov A. Y. Acetylcholine and antibodies against the acetylcholine receptor protect neurons and astrocytes against beta-amyloid toxicityInternational. Journal of Biochemistry and Cell Biology, 2013, vol. 45, no. 4, pp. 899-907. DOI: 10.1016/j.biocel.2013.01.011

9. Liu Y., Zeng X., Hui Y., Zhu C., Wu J., Taylor D. H., Ji J., Fan W., Huang Z., Hu J. Activation of α7 nicotinic acetylcholine receptors protects astrocytes against oxidative stress-induced apoptosis: implications for Parkinson’s disease. Neuropharmacology, 2015, vol. 91, pp. 87-96. DOI: 10.1016/j.neuropharm.2014.11.028

10. Han Z., Li L., Wang L., Degos V., Maze M., Su H. Alpha-7 nicotinic acetylcholine receptor agonist treatment reduces neuroinflammation, oxidative stress, and brain injury in mice with ischemic stroke and bone fracture. Journal of Neuroche- mistry, 2014, vol. 131, no. 4, pp. 498-508. DOI: 10.1111/jnc.12817

11. Nirthanan S., Gwee M. C. Three-finger alpha-neurotoxins and the nicotinic acetylcholine receptor, forty years on. Journal of Pharmacological Sciences, 2004, vol. 94, no. 1, pp. 1-17. DOI: 10.1254/jphs.94.1

12. Wang Z. F., Tang X. C. Huperzine A protects C6 rat glioma cells against oxygen-glucose deprivation-induced injury. FEBS Letters, 2007, vol. 581, no. 4, pp. 596-602. DOI: 10.1016/j.febslet.2007.01.016

13. Niranjan R., Nath C., Shukla R. Melatonin attenuated mediators of neuroinflammation and alpha-7 nicotinic acetylcholine receptor mRNA expression in lipopolysaccharide (LPS) stimulated rat astrocytoma cells, C6. Free Radical Research, 2012, vol. 46, no. 9, pp. 1167-1177. DOI: 10.3109/10715762.2012.697626

14. Osipov A. V., Rucktooa P., Kasheverov I. E., Filkin S. Y., Starkov V. G., Andreeva T. V., Sixma T. K., Bertrand D., Utkin Y. N., Tsetlin V. I. Dimeric α-cobratoxin X-ray structure: localization of intermolecular disulfides and possible mode of binding to nicotinic acetylcholine receptors. Journal of Biological Chemistry, 2012, vol. 287, pp. 6725-6734. DOI: 10.1074/ jbc.M111.322313

15. Korolyuk M. A., Ivanova L. I., Maiorova I. G., Tokarev V. E. Method for determination of catalase activity. Laboratornoye delo [Laboratory Work], 1988, no. 1, pp. 16-19 (in Russian).

16. Kostyuk V. A., Potapovich A. I., Kovaleva Zh. V. A simple and sensitive method for determining the activity of superoxide dismutase, based on the reaction of quercetin oxidation. Voprosy meditsinskoi khimii [Questions of Medical Chemistry], 1990, vol. 36, no. 2, pp. 88-91 (in Russian).

17. Galeotti T., Masotti L., Borrello S., Casali E. Oxy-radical metabolism and control of tumour growth. Xenobiotica, 1991, vol. 21, no. 8, pp. 1041-1051. DOI: 10.3109/00498259109039544

18. Razygraev A. V., Arutyunyan A. V. Determination of human serum glutathione peroxidase activity, by using hydrogen peroxide and 5,5′-dithio-bis (2-nitrobenzoic acid). Klinicheskaya laboratornaya diagnostika [Russian Clinical Laboratory Diagnostics], 2006, no. 6, pp. 13-16 (in Russian).

19. Wang Y., Biswas G., Prabu S. K., Avadhani N. G. Modulation of mitochondrial metabolic function by phorbol 12-myristate 13-acetate through increased mitochondrial translocation of protein kinase Cα in C2C12 myocytes. Biochemical Pharmacology, 2006, vol. 72, no. 7, pp. 881-892. DOI: 10.1016/j.bcp.2006.06.032

20. Capsoni F., Ongari A. M., Reali E., Bosè F., Altomare G. F. The protein kinase C inhibitor Aeb071 (sotrastaurin) modulates migration and superoxide anion production by human neutrophils in vitro. International Journal of Immunopatho- logy and Pharmacology, 2012, vol. 25, no. 3, pp. 617-626. DOI: 10.1177/039463201202500308

21. Kim C. S., Choi J. S., Joo S. Y., Bae E. H., Ma S. K., Lee J., Kim S. W. Nicotine-induced apoptosis in human renal proximal tubular epithelial cells.  PLoS One, 2016, vol. 11, no. 3, p. e0152591. DOI: 10.1371/journal.pone.0152591

22. Steinberg S. F. Mechanisms for redox-regulation of protein kinase C. Frontiers in Pharmacology, 2015, vol. 6, p. 128. https://doi.org/10.3389/fphar.2015.00128

23. Shen J., Yakel J. L. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system.  Acta Pharmacologica Sinica, 2009, vol. 30, no. 6, pp. 673-680. DOI: 10.1038/aps.2009.64

24. Krstić J., Trivanović D., Mojsilović S., Santibanez J. F. Transforming growth factor-beta and oxidative stress interplay: implications in tumorigenesis and cancer progression. Oxidative Medicine and Cellular Longevity, 2015, vol. 2015. 15 p. https://doi.org/10.1155/2015/654594

25. Planavila A., Redondo-Angulo I., Ribas F., Garrabou G., Casademont J., Giralt M., Villarroya F. Fibroblast growth factor 21 protects the heart from oxidative stress.  Cardiovascular Research, 2014, vol. 106, no. 1, pp. 19-31. DOI: 10.1093/cvr/cvu263

26. Arda-Pirincci P., Bolkent S. The role of epidermal growth factor in prevention of oxidative injury and apoptosis induced by intestinal ischemia/reperfusion in rats. Acta Histochemica, 2014, vol. 16, no. 1, pp. 167-175. DOI: 10.1016/j.acthis.2013.07.005

27. Lushchak V. I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biological Interactions, 2014, vol. 224, pp. 164-175. DOI: 10.1016/j.cbi.2014.10.016

28. Gutiérrez-Salinas J., García-Ortíz L., Morales González J. A., Hernández-Rodríguez S., Ramírez-García S., NúñezRamos N. R., Madrigal-Santillán E. In vitro effect of sodium fluoride on malondialdehyde concentration and on superoxide dismutase, catalase, and glutathione peroxidase in human erythrocytes. Scientific World Journal, 2013, vol. 2013. 7 p. DOI: 10.1155/2013/864718


Review

For citations:


Terpinskaya T.I., Osipov A.V., Kondrashova S.B., Ulashchyk V.S., Utkin Yu.N. EFFECT OF ALPHA-COBRATOXIN ON THE OXIDATIVE STRESS INDUCED BY A SERUM-FREE MEDIUM IN C6 GLIOMA CELLS. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2018;15(2):199-206. (In Russ.) https://doi.org/10.29235/1814-6023-2018-15-2-199-206

Views: 552


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)