1. Nicotine mediates oxidative stress and apoptosis through cross talk between NOX1 and Bcl-2 in lung epithelial cells / F. Zanetti [et al.] // Free Radical Biology and Medicine. - 2014. - Vol. 76. - P. 173-184. https://doi.org/10.1016/j.freeradbiomed.2014.08.002
2. Maternal nicotine exposure leads to higher liver oxidative stress and steatosis in adult rat offspring / E. P. Conceição [et al.] // Food and Chemical Toxicology. - 2015. - Vol. 78. - P. 52-59. https://doi.org/10.1016/j.fct.2015.01.025
3. Nicotine induces podocyte apoptosis through increasing oxidative stress / X. Lan [et al.] // PLoS One. - 2016. - Vol. 11, N 12. - P. e0167071. https://doi.org/10.1371/journal.pone.0167071
4. Niu, X.-M. Acetylcholine receptor pathway in lung cancer: new twists to an old story / X.-M. Niu, S. Lu // World J. of Clinical Oncology. - 2014. - Vol. 5, N 4. - P. 667-676. https://doi.org/10.5306/wjco.v5.i4.667
5. Ion channals gated by acetilcholin by acetylcholine and serotonin: structures, biology, and drug discovery / Z. S. Wu [et al.] // Acta Pharmacologica Sinica. - 2015. - Vol. 36, N 8. - P. 895-907. https://doi.org/10.1038/aps.2015.66
6. Nicotine exposure and the progression of chronic kidney disease: role of the α7-nicotinic acetylcholine receptor / G. Rezonzew [et al.] // Amer. J. of Physiology-Renal Physiology. - 2012. - Vol. 303, N 2. - P. F304-F312. https://doi.org/10.1152/ajprenal.00661.2011
7. Activation of nicotinic acetylcholine receptor prevents the production of reactive oxygen species in fibrillar β amyloid peptide (1-42)-stimulated microglia / J. H. Moon [et al.] // Experimental and Molecular Medicine. - 2008. - Vol. 40, N 1. - P. 11-18. https://doi.org/10.3858/emm.2008.40.1.11
8. Acetylcholine and antibodies against the acetylcholine receptor protect neurons and astrocytes against beta-amyloid toxicity / A. V. Kamynina [et al.] // Intern. J. of Biochemistry and Cell Biology. - 2013. - Vol. 45, N 4. - P. 899-907. https://doi.org/10.1016/j.biocel.2013.01.011
9. Activation of α7 nicotinic acetylcholine receptors protects astrocytes against oxidative stress-induced apoptosis: implications for Parkinson’s disease / Y. Liu [et al.] // Neuropharmacology. - 2015. - Vol. 91. - P. 87-96. https://doi.org/10.1016/j.neuropharm.2014.11.028
10. Alpha-7 nicotinic acetylcholine receptor agonist treatment reduces neuroinflammation, oxidative stress, and brain injury in mice with ischemic stroke and bone fracture / Z. Han [et al.] // J. of Neurochemistry. - 2014. - Vol. 131, N 4. - P. 498-508. https://doi.org/10.1111/jnc.12817
11. Nirthanan, S. Three-finger alpha-neurotoxins and the nicotinic acetylcholine receptor, forty years on / S. Nirthanan, M. C. Gwee // J. of Pharmacological Sciences. - 2004. - Vol. 94, N 1. - P. 1-17. https://doi.org/10.1254/jphs.94.1
12. Wang, Z. F. Huperzine A protects C6 rat glioma cells against oxygen-glucose deprivation-induced injury / Z. F. Wang, X. C. Tang // FEBS Letters. - 2007. - Vol. 581, N 4. - P. 596-602. https://doi.org/10.1016/j.febslet.2007.01.016
13. Niranjan, R. Melatonin attenuated mediators of neuroinflammation and alpha-7 nicotinic acetylcholine receptor mRNA expression in lipopolysaccharide (LPS) stimulated rat astrocytoma cells, C6 / R. Niranjan, C. Nath, R. Shukla // Free Radical Research. - 2012. - Vol. 46, N 9. - P. 1167-1177. https://doi.org/10.3109/10715762.2012.697626
14. Dimeric α-cobratoxin X-ray structure: localization of intermolecular disulfi des and possible mode of binding to nicoα-cobratoxin X-ray structure: localization of intermolecular disulfi des and possible mode of binding to nico-cobratoxin X-ray structure: localization of intermolecular disulfides and possible mode of binding to nicotinic acetylcholine receptors / A. V. Osipov [et al.] // J. of Biological Chemistry. - 2012. - Vol. 287. - P. 6725-6734. https://doi.org/10.1074/jbc.M111.322313
15. Метод определения активности каталазы / М. А. Королюк [и др.] // Лаб. дело. - 1988. - № 1. - С. 16-19.
16. Костюк, В. А. Простой и чувствительный метод определения активности супероксиддисмутазы, основанный на реакции окисления кверцетина / В. А. Костюк, А. И. Потапович, Ж. В. Ковалева // Вопр. мед. химии. - 1990. - Т. 36, № 2. - С. 88-91.
17. Oxy-radical metabolism and control of tumour growth / T. Galeotti [et al.] // Xenobiotica. - 1991. - Vol. 21, N 8. - P. 1041-1051. https://doi.org/10.3109/00498259109039544
18. Разыграев, А. В. Определение глутатионпероксидазной активности в сыворотке крови человека с использованием пероксида водорода и 5,5′-дитиобис (2-нитробензойной кислоты) / А. В. Разыграев А. В. Арутюнян // Клин. лаб. диагностика. - 2006. - № 6. - С. 13-16.
19. Modulation of mitochondrial metabolic function by phorbol 12-myristate 13-acetate through increased mitochondrial translocation of protein kinase Cα in C2C12 myocytes / Y. Wang [et al.] // Biochemical Pharmacology. - 2006. - Vol. 72, N 7. - Р. 881-892. https://doi.org/10.1016/j.bcp.2006.06.032
20. The protein kinase C inhibitor Aeb071 (sotrastaurin) modulates migration and superoxide anion production by human neutrophils in vitro / F. Capsoni [et al.] // Intern. J. of Immunopathology and Pharmacology. - 2012. - Vol. 25, N 3. - P. 617- 626. https://doi.org/10.1177/039463201202500308
21. Nicotine-induced apoptosis in human renal proximal tubular epithelial cells / C. S. Kim [et al.] // PLoS One. - 2016. - Vol. 11, N 3. - P. e0152591. https://doi.org/10.1371/journal.pone.0152591
22. Steinberg, S. F. Mechanisms for redox-regulation of protein kinase C / S. F. Steinberg // Frontiers in Pharmacology. - 2015. - Vol. 6. - P. 128. https://doi.org/10.3389/fphar.2015.00128
23. Shen, J. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system / J. Shen, J. L. Yakel // Acta Pharmacologica Sinica. - 2009. - Vol. 30, N 6. - Р. 673-680. https://doi.org/10.1038/aps.2009.64
24. Transforming growth factor-beta and oxidative stress interplay: implications in tumorigenesis and cancer progression / J. Krstić [et al.] // Oxidative Medicine and Cellular Longevity. - 2015. - Vol. 2015. - 15 p. https://doi.org/10.1155/2015/654594
25. Fibroblast growth factor 21 protects the heart from oxidative stress / A. Planavila [et al.] // Cardiovascular Research. - 2014. - Vol. 106, N 1. - P. 19-31. https://doi.org/10.1093/cvr/cvu263
26. Arda-Pirincci, P. The role of epidermal growth factor in prevention of oxidative injury and apoptosis induced by intestinal ischemia/reperfusion in rats / P. Arda-Pirincci, S. Bolkent // Acta Histochemica. - 2014. - Vol. 116, N 1. - P. 167- 175. https://doi.org/10.1016/j.acthis.2013.07.005
27. Lushchak, V. I. Free radicals, reactive oxygen species, oxidative stress and its classification / V. I. Lushchak // Chemico-Biological Interactions. - 2014. - Vol. 224. - P. 164-175. https://doi.org/10.1016/j.cbi.2014.10.016
28. In vitro effect of sodium fluoride on malondialdehyde concentration and on superoxide dismutase, catalase, and glutathione peroxidase in human erythrocytes / J. Gutiérrez-Salinas [et al.] // The Scientific World J. - 2013. - Vol. 2013. - 7 p. https://doi.org/10.1155/2013/864718