ВЛИЯНИЕ АЛЬФА-КОБРАТОКСИНА НА ОКИСЛИТЕЛЬНЫЙ СТРЕСС, ИНДУЦИРОВАННЫЙ БЕССЫВОРОТОЧНОЙ СРЕДОЙ В КЛЕТКАХ ГЛИОМЫ С6
https://doi.org/10.29235/1814-6023-2018-15-2-199-206
Анатацыя
Аб аўтарах
Т. ТерпинскаяБеларусь
А. Осипов
Расія
С. Кондрашова
Беларусь
В. Улащик
Беларусь
Ю. Уткин
Расія
Спіс літаратуры
1. Nicotine mediates oxidative stress and apoptosis through cross talk between NOX1 and Bcl-2 in lung epithelial cells / F. Zanetti [et al.] // Free Radical Biology and Medicine. – 2014. – Vol. 76. – P. 173–184. DOI: 10.1016/j.freeradbiomed.2014.08.002
2. Maternal nicotine exposure leads to higher liver oxidative stress and steatosis in adult rat offspring / E. P. Conceição [et al.] // Food and Chemical Toxicology. – 2015. – Vol. 78. – P. 52–59. DOI: 10.1016/j.fct.2015.01.025
3. Nicotine induces podocyte apoptosis through increasing oxidative stress / X. Lan [et al.] // PLoS One. – 2016. – Vol. 11, N 12. – P. e0167071. DOI: 10.1371/journal.pone.0167071
4. Niu, X.-M. Acetylcholine receptor pathway in lung cancer: new twists to an old story / X.-M. Niu, S. Lu // World J. of Clinical Oncology. – 2014. – Vol. 5, N 4. – P. 667–676. DOI: 10.5306/wjco.v5.i4.667
5. Ion channals gated by acetilcholin by acetylcholine and serotonin: structures, biology, and drug discovery / Z. S. Wu [et al.] // Acta Pharmacologica Sinica. – 2015. – Vol. 36, N 8. – P. 895–907. DOI: 10.1038/aps.2015.66
6. Nicotine exposure and the progression of chronic kidney disease: role of the α7-nicotinic acetylcholine receptor / G. Rezonzew [et al.] // Amer. J. of Physiology-Renal Physiology. – 2012. – Vol. 303, N 2. – P. F304–F312. DOI: 10.1152/ajprenal.00661.2011
7. Activation of nicotinic acetylcholine receptor prevents the production of reactive oxygen species in fibrillar β amyloid peptide (1-42)-stimulated microglia / J. H. Moon [et al.] // Experimental and Molecular Medicine. – 2008. – Vol. 40, N 1. – P. 11–18. DOI: 10.3858/emm.2008.40.1.11
8. Acetylcholine and antibodies against the acetylcholine receptor protect neurons and astrocytes against beta-amyloid toxicity / A. V. Kamynina [et al.] // Intern. J. of Biochemistry and Cell Biology. – 2013. – Vol. 45, N 4. – P. 899–907. DOI: 10.1016/j.biocel.2013.01.011
9. Activation of α7 nicotinic acetylcholine receptors protects astrocytes against oxidative stress-induced apoptosis: implications for Parkinson’s disease / Y. Liu [et al.] // Neuropharmacology. – 2015. – Vol. 91. – P. 87–96. DOI: 10.1016/j.neuropharm.2014.11.028
10. Alpha-7 nicotinic acetylcholine receptor agonist treatment reduces neuroinflammation, oxidative stress, and brain injury in mice with ischemic stroke and bone fracture / Z. Han [et al.] // J. of Neurochemistry. – 2014. – Vol. 131, N 4. – P. 498–508. DOI: 10.1111/jnc.12817
11. Nirthanan, S. Three-finger alpha-neurotoxins and the nicotinic acetylcholine receptor, forty years on / S. Nirthanan, M. C. Gwee // J. of Pharmacological Sciences. – 2004. – Vol. 94, N 1. – P. 1–17. DOI: 10.1254/jphs.94.1
12. Wang, Z. F. Huperzine A protects C6 rat glioma cells against oxygen-glucose deprivation-induced injury / Z. F. Wang, X. C. Tang // FEBS Letters. – 2007. – Vol. 581, N 4. – P. 596–602. DOI: 10.1016/j.febslet.2007.01.016
13. Niranjan, R. Melatonin attenuated mediators of neuroinflammation and alpha-7 nicotinic acetylcholine receptor mRNA expression in lipopolysaccharide (LPS) stimulated rat astrocytoma cells, C6 / R. Niranjan, C. Nath, R. Shukla // Free Radical Research. – 2012. – Vol. 46, N 9. – P. 1167–1177. DOI: 10.3109/10715762.2012.697626
14. Dimeric α-cobratoxin X-ray structure: localization of intermolecular disulfi des and possible mode of binding to nicoα-cobratoxin X-ray structure: localization of intermolecular disulfi des and possible mode of binding to nico-cobratoxin X-ray structure: localization of intermolecular disulfides and possible mode of binding to nicotinic acetylcholine receptors / A. V. Osipov [et al.] // J. of Biological Chemistry. – 2012. – Vol. 287. – P. 6725–6734. DOI: 10.1074/jbc.M111.322313
15. Метод определения активности каталазы / М. А. Королюк [и др.] // Лаб. дело. – 1988. – № 1. – С. 16–19.
16. Костюк, В. А. Простой и чувствительный метод определения активности супероксиддисмутазы, основанный на реакции окисления кверцетина / В. А. Костюк, А. И. Потапович, Ж. В. Ковалева // Вопр. мед. химии. – 1990. – Т. 36, № 2. – С. 88–91.
17. Oxy-radical metabolism and control of tumour growth / T. Galeotti [et al.] // Xenobiotica. – 1991. – Vol. 21, N 8. – P. 1041–1051. DOI: 10.3109/00498259109039544
18. Разыграев, А. В. Определение глутатионпероксидазной активности в сыворотке крови человека с использованием пероксида водорода и 5,5′-дитиобис (2-нитробензойной кислоты) / А. В. Разыграев А. В. Арутюнян // Клин. лаб. диагностика. – 2006. – № 6. – С. 13–16.
19. Modulation of mitochondrial metabolic function by phorbol 12-myristate 13-acetate through increased mitochondrial translocation of protein kinase Cα in C2C12 myocytes / Y. Wang [et al.] // Biochemical Pharmacology. – 2006. – Vol. 72, N 7. – Р. 881–892. DOI: 10.1016/j.bcp.2006.06.032
20. The protein kinase C inhibitor Aeb071 (sotrastaurin) modulates migration and superoxide anion production by human neutrophils in vitro / F. Capsoni [et al.] // Intern. J. of Immunopathology and Pharmacology. – 2012. – Vol. 25, N 3. – P. 617– 626. DOI: 10.1177/039463201202500308
21. Nicotine-induced apoptosis in human renal proximal tubular epithelial cells / C. S. Kim [et al.] // PLoS One. – 2016. – Vol. 11, N 3. – P. e0152591. DOI: 10.1371/journal.pone.0152591
22. Steinberg, S. F. Mechanisms for redox-regulation of protein kinase C / S. F. Steinberg // Frontiers in Pharmacology. – 2015. – Vol. 6. – P. 128. DOI: 10.3389/fphar.2015.00128
23. Shen, J. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system / J. Shen, J. L. Yakel // Acta Pharmacologica Sinica. – 2009. – Vol. 30, N 6. – Р. 673–680. DOI: 10.1038/aps.2009.64
24. Transforming growth factor-beta and oxidative stress interplay: implications in tumorigenesis and cancer progression / J. Krstić [et al.] // Oxidative Medicine and Cellular Longevity. – 2015. – Vol. 2015. – 15 p. DOI: 10.1155/2015/654594
25. Fibroblast growth factor 21 protects the heart from oxidative stress / A. Planavila [et al.] // Cardiovascular Research. – 2014. – Vol. 106, N 1. – P. 19–31. DOI: 10.1093/cvr/cvu263
26. Arda-Pirincci, P. The role of epidermal growth factor in prevention of oxidative injury and apoptosis induced by intestinal ischemia/reperfusion in rats / P. Arda-Pirincci, S. Bolkent // Acta Histochemica. – 2014. – Vol. 116, N 1. – P. 167– 175. DOI: 10.1016/j.acthis.2013.07.005
27. Lushchak, V. I. Free radicals, reactive oxygen species, oxidative stress and its classification / V. I. Lushchak // Chemico-Biological Interactions. – 2014. – Vol. 224. – P. 164–175. DOI: 10.1016/j.cbi.2014.10.016
28. In vitro effect of sodium fluoride on malondialdehyde concentration and on superoxide dismutase, catalase, and glutathione peroxidase in human erythrocytes / J. Gutiérrez-Salinas [et al.] // The Scientific World J. – 2013. – Vol. 2013. – 7 p. DOI: 10.1155/2013/864718
##reviewer.review.form##
Для цытавання:
Терпинская Т.И., Осипов А.В., Кондрашова С.Б., Улащик В.С., Уткин Ю.Н. ВЛИЯНИЕ АЛЬФА-КОБРАТОКСИНА НА ОКИСЛИТЕЛЬНЫЙ СТРЕСС, ИНДУЦИРОВАННЫЙ БЕССЫВОРОТОЧНОЙ СРЕДОЙ В КЛЕТКАХ ГЛИОМЫ С6. Известия Национальной академии наук Беларуси. Серия медицинских наук. 2018;15(2):199-206. https://doi.org/10.29235/1814-6023-2018-15-2-199-206
For citation:
Terpinskaya T.I., Osipov A.V., Kondrashova S.B., Ulashchyk V.S., Utkin Yu.N. EFFECT OF ALPHA-COBRATOXIN ON THE OXIDATIVE STRESS INDUCED BY A SERUM-FREE MEDIUM IN C6 GLIOMA CELLS. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2018;15(2):199-206. (In Russ.) https://doi.org/10.29235/1814-6023-2018-15-2-199-206