CHANGES OF THIOL-DISULFIDE BALANCE IN PARKINSON’S DISEASE
https://doi.org/10.29235/1814-6023-2018-15-1-108-118
Abstract
Parkinson’s disease (BP) is one of the most common neurodegenerative pathologies. It is characterized by a selective death of DA neurons in the black substance of the midbrain, resulting from the formation of an excess of free radicals and the development of oxidative stress.
Attempts to use antioxidants as a means of pathogenetic therapy of BP have been unsuccessful. Modern concepts of the understanding of the role of oxidative stress in the development of Parkinson’s disease (PD), as well as other neurodegenerative diseases suggest that an important role in the mechanisms of metabolic changes leading to the death of nervous tissue is played not only by the enhancement of formation of free radical products but also by the weakening of antioxidant defense systems in brain tissue. The most important components of the thiol/disulphide buffer systems involved in maintaining the redox balance in the brain are pairs of oxidized and reduced glutathione (GSH/GSSG), as well as thiol/disulfide oxidoreductases. Controlling the intensity of formation of free radical products from cellular antioxidant redox enzymes, primarily glutathione and thioredoxin-dependent enzyme systems, is extremely important not only to prevent brain tissue damage due to oxidative stress, but also to maintain the redox balance. The review presents the data showing pronounced changes in the redox potential of the glutathione system, thiol-disulphide balance, S-glutathionylation of in brain tissue proteins in experimental PD models, and in postmortem brain tissue samples of patients with PD. The elucidation of the mechanisms of maintaining the redox balance in brain tissue under oxidative stress in PD can serve as a justification for a new direction in neuroprotection and a search for new agents for pathogenetic therapy of PD.
About the Author
Nina P. KanunnikavaBelarus
D. Sc. (Biol.), Assistant Professor, Leading researcher
50, BLK, 230030, Grodno
References
1. Miller R. L., James-Kracke M., Sun G. Y., Sun A. Y. Oxidative and inflammatory pathways in Parkinson’s disease. Neurochemical Research, 2008, vol. 34, no. 1, pp. 55–65. DOI: 10.1007/s11064-008-9656-2
2. Sofic E., Lange K. W., Jellinger K., Riederer P. Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neuroscience Letters, 1992, vol. 142, no. 1, pp. 128–130. DOI: 10.1016/0304-3940(92)90355-b
3. Gu F., Chauhan V., Chauhan A. Glutathione redox imbalance in brain disorders. Current Opinion in Clinical Nutrition and Metabolic Care, 2015, vol. 18, no. 1, pp. 89–95. DOI: 10.1097/mco.0000000000000134
4. Mieyal J., Gallogly M. M., Qanungo S., Sabens E. A., Shelton M. D. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxidants and Redox Signaling, 2008, vol. 10, no. 11, pp. 1941–1988. DOI: 10.1089/ars.2008.2089
5. Aoyama K., Nakaki T. Impaired glutathione synthesis in neurodegeneration. International Journal of Molecular Sciences, 2013, vol. 14, no. 10, pp. 21021–21044. DOI: 10.3390/ijms141021021
6. McBean G. J., Aslan M., Griffiths H. R., Torrão R. C. Thiol redox homeostasis in neurodegenerative disease. Redox Biology, 2015, vol. 5, pp. 186–194. DOI: 10.1016/j.redox.2015.04.004
7. Johnson W. M., Wilson-Delfosse A. L., Mieyal J. J. Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients, 2012, vol. 4, no. 12, pp. 1399–1440. DOI: 10.3390/nu4101399
8. Ridet J. L., Bensadoun J.-Ch., Déglon N., Aebischer P., Zurn A. D. Lentivirus-mediated expression of glutathione peroxidase: Neuroprotection in murine models of Parkinson’s disease. Neurobiology of Disease, 2006, vol. 21, no. 1, pp. 29– 34. DOI: 10.1016/j.nbd.2005.06.003
9. Trinh K., Moore K., Wes P. D., Muchowski P. J., Dey J., Andrews L., Pallanck L. J. Induction of the phase II detoxification pathway suppresses neuron loss in Drosophila models of Parkinson’s disease. Journal of Neuroscience, 2008, vol. 28, no. 2, pp. 465–472. DOI: 10.1523/jneurosci.4778-07.2008
10. Bashun N., Kanunnikova N., Semenovich D., Raduta E., Lis R. Influence of glycyl-proline on the changes of the neuroactive amino acid metabolism and oxidative stress parameters in the rat brain in experimental Parkinson’s model. German Science Herald, 2017, no. 1, pp. 13–18. DOI: 10.19221/201714
11. Kim Y. H., Lussier S., Rane A., Choi S. W., Andersen J. K. Inducible dopaminergic glutathione depletion in an alphasynuclein transgenic mouse model results in age-related olfactory dysfunction. Neuroscience, 2011, vol. 172, pp. 379–386. DOI: 10.1016/j.neuroscience.2010.10.072
12. Wu Y., Fan Y., Xue B., Luo L., Shen J., Zhang S., Jiang Y., Yin Z. Human glutathione S-transferase P1-1 interacts with TRAF2 and regulates TRAF2-ASK1 signals. Oncogene, 2006, vol. 25, no. 42, pp. 5787–5800. DOI: 10.1038/sj.onc.1209576
13. Bhattacharya P., Keating A. F. Protective role for ovarian glutathione S-transferase isoform during 7,12-dimethylbenz[a] anthracene-induced ovotoxicity. Toxicology and Applied Pharmacology, 2012, vol. 260, no. 2, pp. 201–208. DOI: 10.1016/j. taap.2012.02.014
14. Guan J., Lo M, Dockery P., Mahon S., Karp C. M., Buckley A. R., Lam S., Gout P. W., Wang Y. Z. The xc − cystine/ glutamate antiporter as a potential therapeutic target for small-cell lung cancer: use of sulfasalazine. Cancer Chemother Pharmacology, 2009, vol. 64, no. 3, pp. 463–472. DOI: 10.1007/s00280-008-0894-4
15. Dusinska M., Staruchova M., Horska A., Smolkova B., Collins A., Bonassi S., Volkovova K. Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2012, vol. 736, no. 1–2, pp. 130–137. DOI: 10.1016/j.mrfmmm.2012.03.003
16. Garrido M., Tereshchenko Y., Zhevtsova Z., Taschenberger G., Bähr M., Kügler S. Glutathione depletion and overproduction both initiate degeneration of nigral dopaminergic neurons. Acta Neuropathologica, 2011, vol. 121, no. 4, pp. 475–485. DOI: 10.1007/s00401-010-0791-x
17. Sabens E. A., Distler A. M., Mieyal J. J. Levodopa deactivates enzymes that regulate thiol-disulfide homeostasis and promotes neuronal cell death: Implications for therapy of Parkinson’s disease. Biochemistry, 2010, vol. 49, no. 12, pp. 2715– 2724. DOI: 10.1021/bi9018658
18. Volpicelli-Daley L. A., Luk K. C., Patel T. P., Tanik S. A., Riddle D. M., Stieber A., Meaney D. F., Trojanowski J. Q., Lee V. M.-Y. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron, 2011, vol. 72, no. 1, pp. 57–71. DOI: 10.1016/j.neuron.2011.08.033
19. Paik S. R., Lee D., Cho H.-J., Lee E.-N., Chang Ch.-S. Oxidized glutathione stimulated the amyloid formation of α-synuclein. FEBS Letters, 2003, vol. 537, no. 1–3, pp. 63–67. DOI: 10.1016/s0014-5793(03)00081-4
20. Görner K., Holtorf E., Odoy S., Nuscher B., Yamamoto A., Regula J. T., Beyer K., Haass Ch., Kahle Ph. J. Differential effects of Parkinson’s disease-associated mutations on stability and folding of DJ-1. Journal of Biological Chemistry, 2003, vol. 279, no 8, pp. 6943–6951. DOI: 10.1074/jbc.m309204200
21. Saeed U., Ray A., Valli R. K., Kumar A. M. R., Ravindranath V. DJ-1 loss by glutaredoxin but not glutathione depletion triggers Daxx translocation and cell death. Antioxidants and Redox Signaling, 2010, vol. 13, no. 2, pp. 127–144. DOI: 10.1089/ars.2009.2832
22. Chung K. K. K., Dawson V. L., Dawson T. M. S-nitrosylation in Parkinson’s disease and related neurodegenerative disorders. Methods in Enzymology, 2005, vol. 396, pp. 139–150. DOI: 10.1016/S0076-6879(05)96014-X
23. Bernhardi von R., Eugenin J. Alzheimer’s disease: redox dysregulation as a common denominator for diverse pathogenic mechanisms. Antioxidants and Redox Signaling, 2012, vol. 16, no. 9, pp. 974–1031. DOI: 10.1089/ars.2011.4082
24. Jones D. P. Radical-free biology of oxidative stress. American Journal of Physiology – Cell Physiology, 2008, vol. 295, no. 4, pp. C849–C868. DOI: 10.1152/ajpcell.00283.2008
25. Awasthi Y. C., Chaudhary P., Vatsyayan R., Sharma A., Awasthi S., Sharma R. Physiological and pharmacological significance of glutathione-conjugate transport. Journal of Toxicology and Environmental Health, Part B, 2009, vol. 12, no. 7, pp. 540–551. DOI: 10.1080/10937400903358975
26. Melo A., Monteiro L., Lima R. M. F., Oliveira D. M., Cerqueira M. D., El-Bachá R. S. Oxidative stress in neurodegenerative diseases: Mechanisms and therapeutic perspectives. Oxidative Medicine and Cellular Longevity, 2011, vol. 2011. 14 p. DOI: 10.1155/2011/467180
27. Kil I. S., Park J. W. Regulation of mitochondrial NADP+-dependent isocitrate dehydrogenase activity by glutathionylation. Journal of Biological Chemistry, 2005, vol. 280, no. 11, pp. 10846–10854. DOI: 10.1074/jbc.m411306200
28. Jung K. H., Park J. W. Suppression of mitochondrial NADP(+)-dependent isocitrate dehydrogenase activity enhances curcumin-induced apoptosis in HCT116 cells. Free Radical Research, 2011, vol. 45, no. 4, pp. 431–438. DOI: 10.3109/10715762.2010.540574
29. Kil I. S., Jung K. H., Nam W. S., Park J.-W. Attenuated mitochondrial NADP+-dependent isocitrate dehydrogenase activity enhances EGCG-induced apoptosis. Biochimie, 2011, vol. 93, no. 10, pp. 1808–1815. DOI: 10.1016/j.biochi.2011.06.025
30. Johnson W. M., Yao Ch., Siedlak S. L., Wang W., Zhu X., Caldwell G. A., Wilson-Delfosse A. L., Mieyal J. J., Chen S. G. Glutaredoxin deficiency exacerbates neurodegeneration in C. elegans models of Parkinson’s disease. Human Molecular Genetics, 2015, vol. 24, no. 5, pp. 1322–1335. DOI: 10.1093/hmg/ddu542
31. Fang J., Nakamura T., Cho D.-H., Gu Z., Lipton S. A. S-nitrosylation of peroxiredoxin 2 promotes oxidative stressinduced neuronal cell death in Parkinson’s disease. Proceedings of the National Academy of Sciences, 2007, vol. 104, no. 47, pp. 18742–18747. DOI: 10.1073/pnas.0705904104
32. Mieyal J. J., Gallogly M. M., Qanungo S., Sabens E. A., Shelton M. D. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxidants and Redox Signaling, 2008, vol. 10, no. 11, pp. 1941–1988. DOI: 10.1089/ars.2008.2089
33. Nomura K., Lee M., Banks Ch., Lee G., Morris B. J. An ASK1-p38 signalling pathway mediates hydrogen peroxideinduced toxicity in NG108-15 neuronal cells. Neuroscience Letters, 2013, vol. 549, pp. 163–167. DOI: 10.1016/j.neulet.2013.05.045
34. Drechsel D. A., Patel M. Respiration-dependent H2 O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system. Journal of Biological Chemistry, 2010, vol. 285, no. 36, pp. 27850–27858. DOI: 10.1074/jbc.m110.101196
35. Lopert P., Day B. J., Patel M. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells. PLoS One, 2012, vol. 7, no. 11, p. e50683. DOI: 10.1371/journal.pone.0050683
36. Lopert P., Patel M. Nicotinamide nucleotide transhydrogenase (Nnt) links the substrate requirement in brain mitochondria for hydrogen peroxide removal to the thioredoxin/peroxiredoxin (Trx/Prx) system. Journal of Biological Chemistry, 2014, vol. 289, no. 22, pp. 15611–15620. DOI: 10.1074/jbc.m113.533653
37. Gallogly M. M., Starke D. W., Mieyal J. J. Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxidants and Redox Signaling, 2009, vol. 11, no. 5, pp. 1059–1081. DOI: 10.1089/ars.2008.2291
38. Kenchappa R. S., Ravindranath V. Glutaredoxin is essential for maintenance of brain mitochondrial complex I: studies with MPTP. FASEB Journal, 2003, vol. 17, no. 6, pp. 717–719. DOI: 10.1096/fj.02-0771fje
39. Diwakar L., Kenchappa R. S., Annepu J., Ravindranath V. Downregulation of glutaredoxin but not glutathione loss leads to mitochondrial dysfunction in female mice CNS: implications in excitotoxicity. Neurochemistry International, 2007, vol. 51, no. 1, pp. 37–46. DOI: 10.1016/j.neuint.2007.03.008
40. Lee D. W., Kaur D., Chinta S. J., Rajagopalan S., Andersen J. K. A disruption in iron-sulfur center biogenesis via inhibition of mitochondrial dithiol glutaredoxin 2 may contribute to mitochondrial and cellular iron dysregulation in mammalian glutathione-depleted dopaminergic cells: implications for Parkinson’s disease. Antioxidants and Redox Signaling, 2009, vol. 11, no. 9, pp. 2083–2094. DOI: 10.1089/ars.2009.2489
41. Karunakaran S., Saeed U., Ramakrishnan S., Koumar R. Ch., Ravindranath V. Constitutive expression and functional characterization of mitochondrial glutaredoxin (Grx2) in mouse and human brain. Brain Research, 2007, vol. 1185, pp. 8–17. DOI: 10.1016/j.brainres.2007.09.019
42. Liedhegner E. A. S., Steller K. M., Mieyal J. J. Levodopa activates apoptosis signaling kinase 1 (ASK1) and promotes apoptosis in a neuronal model: Implications for the treatment of Parkinson’s disease. Chemical Research in Toxicology, 2011, vol. 24, no. 10, pp. 1644–1652. DOI: 10.1021/tx200082h
43. Saeed U., Durgadoss L., Valli R. K., Joshi D. C., Joshi P. G., Ravindranath V. Knockdown of cytosolic glutaredoxin 1 leads to loss of mitochondrial membrane potential: implication in neurodegenerative diseases. PLoS One, 2008, vol. 3, no. 6, p. e2459. DOI: 10.1371/journal.pone.0002459
44. Saeed U., Ray A., Valli R. K., Kumar A. M., Ravindranath V. DJ-1 loss by glutaredoxin but not glutathione depletion triggers DAXX translocation and cell death. Antioxidants and Redox Signaling, 2010, vol. 13, no. 2, pp. 127–144. DOI: 10.1089/ars.2009.2832
45. Lopert P., Patel M. Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption. Redox Biology, 2014, vol. 2, pp. 667–672. DOI: 10.1016/j.redox.2014.04.010
46. Sabens Liedhegner E. A., Gao X.-H., Mieyal J. J. Mechanisms of altered redox regulation in neurodegenerative diseases – focus on S-glutathionylation. Antioxidants and Redox Signaling, 2012, vol. 16, no. 6, pp. 543–566. DOI: 10.1089/ ars.2011.4119
47. Masutani H., Bai J., Kim Y.-Ch., Yodoi J. Thioredoxin as a neurotrophic cofactor and an important regulator of neuroprotection. Molecular Neurobiology, 2004, vol. 29, no. 3, pp. 229–242. DOI: 10.1385/mn:29:3:229
48. Ungerstedt J., Du Y., Zhang H., Nair D., Holmgren A. In vivo redox state of human thioredoxin and redox shift by the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Free Radical Biology and Medicine, 2012, vol. 53, no. 11, pp. 2002–2007. DOI: 10.1016/j.freeradbiomed.2012.09.019
49. Holmgren A., Lu J. Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochemical and Biophysical Research Communications, 2010, vol. 396, no. 1, pp. 120–124. DOI: 10.1016/j.bbrc.2010.03.083
50. Hashemy S. I., Holmgren A. Regulation of the catalytic activity and structure of human thioredoxin 1 via oxidation and S-nitrosylation of cysteine residues. Journal of Biological Chemistry, 2008, vol. 283, no. 32, pp. 21890–21898. DOI: 10.1074/jbc.m801047200
51. Holmgren A. Thioredoxin. Annual Review of Biochemistry, 1985, vol. 54, pp. 237–271. DOI: 10.1146/annurev. bi.54.070185.001321
52. Lillig C. H., Holmgren A. Thioredoxin and related molecules: from biology to health and disease. Antioxidants and Redox Signaling, 2007, vol. 9, no. 1, pp. 25–47. DOI: 10.1089/ars.2007.9.25
53. Powis G., Montfort W. R. Properties and biological activities of thioredoxins. Annual Review of Biophysics and Biomolecular Structure, 2001, vol. 30, no. 1, pp. 421–455. DOI: 10.1146/annurev.biophys.30.1.421
54. Im J. Y., Lee K.-W., Junn E., Mouradian M. M. DJ-1 protects against oxidative damage by regulating the thioredoxin/ ASK1 complex. Neuroscience Research, 2010, vol. 67, no. 3, pp. 203–208. DOI: 10.1016/j.neures.2010.04.002
55. Andres-Mateos E., Perier C., Zhang L., Blanchard-Fillion B., Greco T. M., Thomas B., Ko H. S., Sasaki M., Ischiropoulos H., Przedborski S., Dawson T. M., Dawson V. L. DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proceedings of the National Academy of Sciences, 2007, vol. 104, no. 37, pp. 14807–14812. DOI: 10.1073/ pnas.0703219104
56. Kabe Y., Kabe Y., Ando K., Hirao S., Yoshida M., Handa H. Redox Regulation of NF-κB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxidants and Redox Signaling, 2005, vol. 7, no. 3–4, pp. 395–403. DOI: 10.1089/ars.2005.7.395
57. Niso-Santano M., González-Polo R. A., Bravo-San Pedro J. M., Gómez-Sánchez R., Lastres-Becker I., Ortiz-Ortiz M. A., Soler G., Morán J. M., Cuadrado A., Fuentes J. M. Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: modulation by the Nrf2/Trx axis. Free Radical Biology and Medicine, 2010, vol. 48, no. 10, pp. 1370–1381. DOI: 10.1016/j.freeradbiomed.2010.02.024
58. Zhu J. W., Yuan J. F., Yang H. M., Wang S. T., Zhang Ch. G., Sun L. L., Yang H., Zhang H. Extracellular cysteine (Cys)/cystine (CySS) redox regulates metabotropic glutamate receptor 5 activity. Biochimie, 2012, vol. 94, no. 3, pp. 617–627. DOI: 10.1016/j.biochi.2011.09.013 59. Yang W., Tiffany-Castiglioni E., Koh H. Ch., Son I.-H. Paraquat activates the IRE1/ASK1/JNK cascade associated with apoptosis in human neuroblastoma SH-SY5Y cells. Toxicology Letters, 2009, vol. 191, no. 2–3, pp. 203–210. DOI: 10.1016/j.toxlet.2009.08.024
59. Liu Z., Jing Y., Yin J., Mu J., Yao T., Gao L. Downregulation of thioredoxin reductase 1 expression in the substantia nigra pars compacta of Parkinson’s disease mice. Neural Regeneration Research, 2013, vol. 8, no. 35, pp. 3275–3283. DOI: 10.3969/j.issn.1673-5374.2013.35.002
60. Zeng X. S., Jia J. J., Kwon Y., Wang S. D., Bai J. The role of thioredoxin-1 in suppression of endoplasmic reticulum stress in Parkinson disease. Free Radical Biology and Medicine, 2014, vol. 67, pp. 10–18. DOI: 10.1016/j.freeradbiomed.2 013.10.013
61. Umeda-Kameyama Y., Tsuda M., Ohkura Ch., Matsuo T., Namba Y., Ohuchi Y., Aigaki T. Thioredoxin suppresses Parkin-associated endothelin receptor-like receptor-induced neurotoxicity and extends longevity in drosophila. Journal of Biological Chemistry, 2007, vol. 282, no. 15, pp. 11180–11187. DOI: 10.1074/jbc.m700937200
62. Carilho Torrao R. B., Dias I. H. K., Bennett S. J., Dunston Ch. R., Griffiths H. R. Healthy ageing and depletion of intracellular glutathione influences T cell membrane thioredoxin-1 levels and cytokine secretion. Chemistry Central Journal, 2013, vol. 7, no. 1, p. 150. DOI: 10.1186/1752-153X-7-150
63. Hattori F., Oikawa S. Peroxiredoxins in the central nervous system. Peroxiredoxin Systems. Dordrecht, 2007, pp. 357–374. DOI: 10.1007/978-1-4020-6051-9_17
64. Randall L. M., Manta B., Hugo M., Gil M., Batthyàny C., Trujillo M., Poole L. B., Denicola A. Nitration transforms a sensitive peroxiredoxin 2 into a more active and robust peroxidase. Journal of Biological Chemistry, 2014, vol. 289, no. 22, pp. 15536–15543. DOI: 10.1074/jbc.m113.539213
65. Kim I. K., Lee K. J., Rhee S., Seo S. B., Pak J. H. Protective effects of peroxiredoxin 6 overexpression on amyloid beta-induced apoptosis in PC12 cells. Free Radical Research, 2013, vol. 47, no. 10, pp. 836–846. DOI: 10.3109/10715762.2013.833330
66. Yun H. M., Jin P., Han J.-Y., Lee M.-S., Han S.-B., Oh K.-W., Hong S.-H., Jung E.-Y., Hong J. T. Acceleration of the development of Alzheimer’s disease in amyloid beta-infused peroxiredoxin 6 overexpression transgenic mice. Molecular Neurobiology, 2013, vol. 48, no. 3, pp. 941–951. DOI: 10.1007/s12035-013-8479-6
67. Lee Y. M., Park S. H., Shin D.-I., Hwang J.-Y., Park B., Park Y.-J., Lee T. H., Chae H. Z., Jin B. K., Oh T. H., Oh Y. J. Oxidative modification of peroxiredoxin is associated with drug-induced apoptotic signaling in experimental models of Parkinson disease. Journal of Biological Chemistry, 2008, vol. 283, no. 15, pp. 9986–9998. DOI: 10.1074/jbc.m800426200
68. Angeles D. C., Gan B.-H., Onstead L., Zhao Y., Lim K.-L., Dachsel J., Melrose H., Farrer M., Wszolek Z. K., Dickson D. W., Tan E.-K. Mutations in LRRK2 increase phosphorylation of peroxiredoxin 3 exacerbating oxidative stress-induced neuronal death. Human Mutation, 2011, vol. 32, no. 12, pp. 1390–1397. DOI: 10.1002/humu.21582
69. D’Autréaux B., Toledano M. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nature Reviews Molecular Cell Biology, 2007, vol. 8, no. 10, pp. 813–824. DOI: 10.1038/nrm2256
Review
For citations:
Kanunnikava N.P. CHANGES OF THIOL-DISULFIDE BALANCE IN PARKINSON’S DISEASE. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2018;15(1):108-118. (In Russ.) https://doi.org/10.29235/1814-6023-2018-15-1-108-118