ИЗМЕНЕНИЯ ТИОЛ-ДИСУЛЬФИДНОГО БАЛАНСА ПРИ БОЛЕЗНИ ПАРКИНСОНА


https://doi.org/10.29235/1814-6023-2018-15-1-108-118

Полный текст:


Аннотация

Болезнь Паркинсона (БП) является одной из наиболее распространенных нейродегенеративных патологий. Она характеризуется селективной гибелью ДА-нейронов в черной субстанции среднего мозга, обусловленной образованием избытка свободных радикалов и развитием окислительного стресса.

Попытки применения антиоксидантов как средств патогенетической терапии БП оказались безуспешными. Современные представления о развитии нейродегенеративных изменений при БП свидетельствуют о том, что важную роль в механизмах метаболических изменений, приводящих к гибели нейронов, играет не только усиление образования свободнорадикальных продуктов, но и недостаточная активность систем антиоксидантной защиты в ткани мозга. Важнейшими системами, участвующими в поддержании окислительно-восстановительного баланса в головном мозге, являются системы поддержания тиол-дисульфидного баланса, в частности система глутатиона (GSH/ GSSG), а также тиоредоксин, глутаредоксины, пероксиредоксин. В обзоре представлены данные, свидетельствующие о выраженных изменениях редокс-потенциала системы глутатиона, тиол-дисульфидного баланса, S-глутатионилирования белков в ткани мозга в экспериментальных моделях БП, а также в посмертных образцах ткани мозга пациентов с БП. Выяснение механизмов поддержания редокс-баланса в ткани мозга в условиях окислительного стресса при БП может послужить обоснованием для развития нового направления в нейропротекции и поиска новых средств патогенетической терапии БП. 


Об авторе

Н. П. Канунникова
Институт биохимии биологически активных соединений НАН Беларуси
Беларусь

д-р биол. наук, доцент, вед. науч. сотрудник

БЛК, 50, 230030, г. Гродно



Список литературы

1. Oxidative and inflammatory pathways in Parkinson’s disease / R. L. Miller [et al.] // Neurochemical Research. – 2008. – Vol. 34, N 1. – P. 55–65.

2. Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease / E. Sofic [et al.] // Neuroscience Letters. – 1992. – Vol. 142, N 2. – P. 128–130.

3. Gu, F. Glutathione redox imbalance in brain disorders / F. Gu, V. Chauhan, A. Chauhan // Current Opinion in Clinical Nutrition and Metabolic Care. – 2015. – Vol. 18, N 1. – P. 89–95.

4. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation / J. Mieyal [et al.] // Antioxidants and redox signaling. – 2008. – Vol. 10, N 11. – P. 1941–1988.

5. Aoyama, K. Impaired glutathione synthesis in neurodegeneration / K. Aoyama, T. Nakaki // Intern. J. of Molecular Sciences. – 2013. – Vol. 14, N 10. – P. 21021–21044.

6. Thiol redox homeostasis in neurodegenerative disease / G. J. McBean [et al.] // Redox Biology. – 2015. – Vol. 5. – P. 186–194.

7. Johnson, W. M. Dysregulation of glutathione homeostasis in neurodegenerative diseases / W. M. Johnson, A. L. Wilson-Delfosse, J. J. Mieyal // Nutrients. – 2012. – Vol. 4, N 12. – P. 1399–1440.

8. Lentivirus-mediated expression of glutathione peroxidase: Neuroprotection in murine models of Parkinson’s disease / J. L. Ridet [et al.] // Neurobiology of Disease. – 2006. – Vol. 21, N 1. – P. 29–34.

9. Induction of the phase II detoxification pathway suppresses neuron loss in Drosophila models of Parkinson’s disease / K. Trinh [et al.] // J. of Neuroscience. – 2008. – Vol. 28, N 2. – P. 465–472.

10. Influence of glycyl-proline on the changes of the neuroactive amino acid metabolism and oxidative stress parameters in the rat brain in experimental Parkinson’s model / N. Bashun [et al.] // German Science. Herald. – 2017. – N 1. – P. 13–18.

11. Inducible dopaminergic glutathione depletion in an alpha-synuclein transgenic mouse model results in age-related olfactory dysfunction / J. H. Kim [et al.] // Neuroscience. – 2011. – Vol. 172. – P. 379–386.

12. Human glutathione S-transferase P1-1 interacts with TRAF2 and regulates TRAF2-ASK1 signals / Y. Wu [et al.] // Oncogene. – 2006. – Vol. 25, N 42. – P. 5787–5800.

13. Bhattacharya, P. Protective role for ovarian glutathione S-transferase isoform during 7,12-dimethylbenz[a]anthracene-induced ovotoxicity / P. Bhattacharya, A. F. Keating // Toxicology and Appl. Pharmacology. – 2012. – Vol. 260, N 2. – P. 201–208.

14. The xc − cystine/glutamate antiporter as a potential therapeutic target for small-cell lung cancer: use of sulfasalazine / J. Guan J. [et al.] // Cancer Chemother Pharmacology. – 2009. – Vol. 64, N 3. – P. 463–472.

15. Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies / M. Dusinska [et al.] // Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. – 2012. – Vol. 736, N 1–2. – P. 130–137.

16. Glutathione depletion and overproduction both initiate degeneration of nigral dopaminergic neurons / M. Garrido [et al.] // Acta Neuropathologica. – 2011. – Vol. 121, N 4. – P. 475–485.

17. Sabens, E. A. Levodopa deactivates enzymes that regulate thiol-disulfide homeostasis and promotes neuronal cell death: Implications for therapy of Parkinson’s disease / E. A. Sabens, A. M. Distler, J. J. Mieyal // Biochemistry. – 2010. – Vol. 49, N 12. – P. 2715–2724.

18. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death / L. A. Volpicelli-Daley [et al.] // Neuron. – 2011. – Vol. 72, N 1. – P. 57–71.

19. Oxidized glutathione stimulated the amyloid formation of α-synuclein / S. R. Paik [et al.] // FEBS Letters. – 2003. – Vol. 537, N 1–3. – P. 63–67.

20. Differential effects of Parkinson’s disease-associated mutations on stability and folding of DJ-1 / K. Görner [et al.] // J. of Biol. Chemistry. – 2003. – Vol. 279, N 8. – P. 6943–6951.

21. DJ-1 loss by glutaredoxin but not glutathione depletion triggers Daxx translocation and cell death / U. Saeed [et al.] // Antioxidants and Redox Signaling. – 2010. – Vol. 13, N 2. – P. 127–144.

22. Chung, K. K. K. S-nitrosylation in Parkinson’s disease and related neurodegenerative disorders / K. K. Chung, V. L. Dawson, T. M. Dawson // Methods Enzymology. – 2005. – Vol. 396. – P. 139–150.

23. Bernhardi von, R. Alzheimer’s disease: redox dysregulation as a common denominator for diverse pathogenic mechanisms / R. von Bernhardi, J. Eugenin // Antioxidants and Redox Signaling. – 2012. – Vol. 16, N 9. – P. 974–1031.

24. Jones, D. P. Radical-free biology of oxidative stress / D. P. Jones // Amer. J. of Physiology – Cell Physiology. – 2008. – Vol. 295, N 4. – P. C849–C868.

25. Physiological and pharmacological significance of glutathione-conjugate transport / Y. C. Awasthi [et al.] // J. of Toxicology and Environmental Health, Part B. – 2009. – Vol. 12, N 7. – P. 540–551.

26. Oxidative stress in neurodegenerative diseases: Mechanisms and therapeutic perspectives / A. Melo [et al.] // Oxidative Medicine and Cellular Longevity. – 2011. – Vol. 2011. – 14 p.

27. Kil, I. S. Regulation of mitochondrial NADP+-dependent isocitrate dehydrogenase activity by glutathionylation / I. S. Kil, J. W. Park // J. of Biol. Chemistry. – 2005. – Vol. 280, N 11. – P. 10846–10854.

28. Jung, K. H. Suppression of mitochondrial NADP(+)-dependent isocitrate dehydrogenase activity enhances curcumininduced apoptosis in HCT116 cells / K. H. Jung, J. W. Park // Free Radical Research. – 2011. – Vol. 45, N 4. – P. 431–438.

29. Attenuated mitochondrial NADP+-dependent isocitrate dehydrogenase activity enhances EGCG-induced apoptosis / I. S. Kil [et al.] // Biochimie. – 2011. – Vol. 93, N 10. – P. 1808–1815.

30. Glutaredoxin deficiency exacerbates neurodegeneration in C. elegans models of Parkinson’s disease / W. M. Johnson [et al.] // Human Molecular Genetics. – 2015. – Vol. 24, N 5. – P. 1322–1335.

31. S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson’s disease / J. Fang [et al.] // Proc. of the Nat. Acad. of Sciences. – 2007. – Vol. 104, N 47. – P. 18742–18747.

32. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation / J. J. Mieyal [et al.] // Antioxidants and Redox Signaling. – 2008. – Vol. 10, N 11. – P. 1941–1988.

33. An ASK1-p38 signalling pathway mediates hydrogen peroxide-induced toxicity in NG108-15 neuronal cells / K. Nomura [et al.] // Neuroscience Letters. – 2013. – Vol. 549. – P. 163–167.

34. Drechsel, D. A. Respiration-dependent H2 O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system / D. A. Drechsel, M. Patel // J. of Biol. Chemistry. – 2010. – Vol. 285, N 36. – P. 27850–27858.

35. Lopert, P. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells / P. Lopert, B. J. Day, M. Patel // PLoS One. – 2012. – Vol. 7, N 11. – Р. e50683.

36. Lopert, P. Nicotinamide nucleotide transhydrogenase (Nnt) links the substrate requirement in brain mitochondria for hydrogen peroxide removal to the thioredoxin/peroxiredoxin (Trx/Prx) system / P. Lopert, M. Patel // J. of Biol. Chemistry. – 2014. – Vol. 289, N 22. – P. 15611–15620.

37. Gallogly, M. M. Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation / M. M. Gallogly, D. W. Starke, J. J. Mieyal // Antioxidants and Redox Signaling. – 2009. – Vol. 11, N 5. – P. 1059–1081.

38. Kenchappa, R. S. Glutaredoxin is essential for maintenance of brain mitochondrial complex I: studies with MPTP / R. S. Kenchappa, V. Ravindranath // FASEB J. – 2003. – Vol. 17, N 6. – P. 717–719.

39. Downregulation of glutaredoxin but not glutathione loss leads to mitochondrial dysfunction in female mice CNS: implications in excitotoxicity / L. Diwakar [et al.] // Neurochemistry Intern. – 2007. – Vol. 51, N 1. – P. 37–46.

40. A disruption in iron-sulfur center biogenesis via inhibition of mitochondrial dithiol glutaredoxin 2 may contribute to mitochondrial and cellular iron dysregulation in mammalian glutathione-depleted dopaminergic cells: implications for Parkinson’s disease / D. W. Lee [et al.] // Antioxidants and Redox Signaling. – 2009. – Vol. 11, N 9. – P. 2083–2094.

41. Constitutive expression and functional characterization of mitochondrial glutaredoxin (Grx2) in mouse and human brain / S. Karunakaran [et al.] // Brain Resesrch. – 2007. – Vol. 1185. – P. 8–17.

42. Liedhegner, E. A. S. Levodopa activates apoptosis signaling kinase 1 (ASK1) and promotes apoptosis in a neuronal model: Implications for the treatment of Parkinson’s disease / E. A. S. Liedhegner, K. M. Steller, J. J. Mieyal // Chem. Research in Toxicology. – 2011. – Vol. 24, N 10. – P. 1644–1652.

43. Knockdown of cytosolic glutaredoxin 1 leads to loss of mitochondrial membrane potential: implication in neurodegenerative diseases / U. Saeed [et al.] // PLoS One. – 2008. – Vol. 3, N 6. – P. e2459.

44. DJ-1 loss by glutaredoxin but not glutathione depletion triggers DAXX translocation and cell death / U. Saeed [et al.] // Antioxidants and Redox Signaling. – 2010. – Vol. 13, N 2. – P. 127–144.

45. Lopert, P. Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption / P. Lopert, M. Patel // Redox Biology. – 2014. – Vol. 2. – P. 667–672.

46. Sabens Liedhegner, E. A. Mechanisms of altered redox regulation in neurodegenerative diseases – focus on S-glutathionylation / E. A. Sabens Liedhegner, X.-H. Gao, J. J. Mieyal // Antioxidants and Redox Signaling. – 2012. – Vol. 16, N 6. – P. 543–566.

47. Thioredoxin as a neurotrophic cofactor and an important regulator of neuroprotection / H. Masutani [et al.] // Molecular Neurobiology. – 2004. – Vol. 29, N 3. – P. 229–242.

48. In vivo redox state of human thioredoxin and redox shift by the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) / J. Ungerstedt [et al.] // Free Radical Biology and Medicine. – 2012. – Vol. 53, N 11. – P. 2002–2007.

49. Holmgren, A. Thioredoxin and thioredoxin reductase: current research with special reference to human disease / A. Holmgren, J. Lu // Biochem. and Biophys. Research Communications. – 2010. – Vol. 396, N 1. – P. 120–124.

50. Hashemy, S. I. Regulation of the catalytic activity and structure of human thioredoxin 1 via oxidation and S-nitrosylation of cysteine residues / S. I. Hashemy, A. Holmgren // J. of Biol. Chemistry. – 2008. – Vol. 283, N 32. – P. 21890–21898.

51. Holmgren, A. Thioredoxin / A. Holmgren // Annu. Rev. of Biochemistry. – 1985. – Vol. 54. – P. 237–271.

52. Lillig, C. H. Thioredoxin and related molecules: from biology to health and disease / C. H. Lillig, A. Holmgren // Antioxidants and Redox Signaling. – 2007. – Vol. 9, N 1. – P. 25–47.

53. Powis, G. Properties and biological activities of thioredoxins / G. Powis, W. R. Montfort // Annu. Rev. of Biophysics and Biomolecular Structure. – 2001. – Vol. 30, N 1. – P. 421–455.

54. DJ-1 protects against oxidative damage by regulating the thioredoxin/ASK1 complex / J. Y. Im [et al.] // Neuroscience Research. – 2010. – Vol. 67, N 3. – P. 203–208.

55. DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase / E. Andres-Mateos [et al.] // Proc. of the Nat. Acad. of Sciences. – 2007. – Vol. 104, N 37. – P. 14807–14812.

56. Redox Regulation of NF-κB activation: distinct redox regulation between the cytoplasm and the nucleus / Y. Kabe [et al.] // Antioxidants and Redox Signaling. – 2005. – Vol. 7, N 3–4. – P. 395–403.

57. Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: modulation by the Nrf2/Trx axis / M. Niso-Santano [et al.] // Free Radical Biology and Medicine. – 2010. – Vol. 48, N 10. – P. 1370–1381.

58. Extracellular cysteine (Cys)/cystine (CySS) redox regulates metabotropic glutamate receptor 5 activity / J. W. Zhu [et al.] // Biochimie. – 2012. – Vol. 94, N 3. – P. 617–627.

59. Paraquat activates the IRE1/ASK1/JNK cascade associated with apoptosis in human neuroblastoma SH-SY5Y cells / W. Yang [et al.] // Toxicology Letters. – 2009. – Vol. 191, N 2–3. – P. 203–210.

60. Downregulation of thioredoxin reductase 1 expression in the substantia nigra pars compacta of Parkinson’s disease mice / Z. Liu [et al.] // Neural Regeneration Research. – 2013. – Vol. 8, N 35. – P. 3275–3283.

61. The role of thioredoxin-1 in suppression of endoplasmic reticulum stress in Parkinson disease / X. S. Zeng [et al.] // Free Radical Biology and Medicine. – 2014. – Vol. 67. – P. 10–18.

62. Thioredoxin suppresses Parkin-associated endothelin receptor-like receptor-induced neurotoxicity and extends longevity in drosophila / Y. Umeda-Kameyama [et al.] // J. of Biol. Chemistry. – 2007. – Vol. 282, N 15. – P. 11180–11187.

63. Healthy ageing and depletion of intracellular glutathione influences T cell membrane thioredoxin-1 levels and cytokine secretion / R. B. Carilho Torrao [et al.] // Chemistry Central J. – 2013. – Vol. 7, N 1. – P. 150.

64. Hattori, F. Peroxiredoxins in the central nervous system / F. Hattori, S. Oikawa // Peroxiredoxin Systems / ed. : L. Flohé, J. R. Harris. – Dordrecht, 2007. – P. 357–374. – (Subcellular Biochemistry ; vol. 44).

65. Nitration transforms a sensitive peroxiredoxin 2 into a more active and robust peroxidase / L. M. Randall [et al.] // J. of Biol. Chemistry. – 2014. – Vol. 289, N 22. – P. 15536–15543.

66. Protective effects of peroxiredoxin 6 overexpression on amyloid beta-induced apoptosis in PC12 cells / I. K. Kim [et al.] // Free Radical Research. – 2013. – Vol. 47, N 10. – P. 836–846.

67. Acceleration of the development of Alzheimer’s disease in amyloid beta-infused peroxiredoxin 6 overexpression transgenic mice / H. M. Yun [et al.] // Molecular Neurobiology. – 2013. – Vol. 48, N 3. – P. 941–951.

68. Oxidative modification of peroxiredoxin is associated with drug-induced apoptotic signaling in experimental models of Parkinson disease / Y. M. Lee [et al.] // J. of Biol. Chemistry. – 2008. – Vol. 283, N 15. – P. 9986–9998.

69. Mutations in LRRK2 increase phosphorylation of peroxiredoxin 3 exacerbating oxidative stress-induced neuronal death / D. C. Angeles [et al.] // Human Mutation. – 2011. – Vol. 32, N 12. – P. 1390–1397.

70. D’Autreaux, B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis / B. D’Autréaux, M. Toledano // Nature Rev. Molecular Cell Biology. – 2007. – Vol. 8, N 10. – P. 813–824.


Дополнительные файлы

Для цитирования: Канунникова Н.П. ИЗМЕНЕНИЯ ТИОЛ-ДИСУЛЬФИДНОГО БАЛАНСА ПРИ БОЛЕЗНИ ПАРКИНСОНА. Известия Национальной академии наук Беларуси. Серия медицинских наук. 2018;15(1):108-118. https://doi.org/10.29235/1814-6023-2018-15-1-108-118

For citation: Kanunnikava N.P. CHANGES OF THIOL-DISULFIDE BALANCE IN PARKINSON’S DISEASE. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2018;15(1):108-118. (In Russ.) https://doi.org/10.29235/1814-6023-2018-15-1-108-118

Просмотров: 127

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)