Preview

Proceedings of the National Academy of Sciences of Belarus, Medical series

Advanced search

SUPPRESSION OF CD8+ T-LYMPHOCYTES AND NATURAL KILLER CELLS CYTOTOXIC FUNCTION BY HUMAN OLFACTORY MUCOSA-DERIVED MESENCHYMAL STEM CELLS

Abstract

In this study, the immunomodulatory effects of human olfactory mucosa-derived stem cells (hOM-MSCs) against the cell-mediated cytotoxic activity of cytotoxic T-lymphocytes (CTLs) and natural killer cells (NKCs) are evaluated. It has been shown that the immunomodulatory activity is realized through a suppression of cytotoxic mechanisms (decrease in the expression of perforin, granzime B, CD107a), which eventually leads to a reduced ability to induce apoptosis in target tumor cells. The obtained results can be applied for development of biomedical cell products based on hOM-MSCs to treat diseases in which the leading role is played by the cytotoxic activity of CTL and NKCs. 

About the Authors

N. H. Antonevich
Republican Research and Practical Center for Epidemiology and Microbiology, Minsk
Belarus

Researcher

23, Filimonov Str., 220114



A. Y. Hancharou
Republican Research and Practical Center for Epidemiology and Microbiology, Minsk
Belarus

Ph. D. (Med.), Head of the Laboratory

23, Filimonov Str., 220114



O. V. Buschik
Republican Research and Practical Center for Epidemiology and Microbiology, Minsk
Belarus

Junior Researcher

23, Filimonov Str., 220114



A. G. Rynda
Republican Research and Practical Center for Epidemiology and Microbiology, Minsk
Belarus

Junior Researcher

23, Filimonov Str., 220114



V. L. Chekan
Belarusian Medical Academy of Postgraduate Education, Minsk
Belarus

Ph. D. (Med.), Assistant Professor

8, Sukhaya Str., 220004



E. A. Strinkevich
Belarusian Medical Academy of Postgraduate Education, Minsk
Belarus

Ph. D. (Med.), Assistant

8, Sukhaya Str., 220004



References

1. Ribeiro A., Laranjeira P., Mendes S., Velada I., Leite C., Andrade P.,Santos F.,Henriques A., Grãos M., Cardoso C. M., Martinho A., Pais M., da Silva C. L., Cabral J., Trindade H., Paiva A. Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Research and Therapy, 2013, vol. 4, no. 5, pp. 125. DOI: 10.1186/scrt336

2. Delorme B., Nivet E., Gaillard J., Häupl T., Ringe J., Deveze A., Magnan J., Sohier J., Khrestchatisky M., Roman F. S., Charbord P., Sensebe L., Layrolle P., Feron F. The human nose harbors a niche of olfactory ectomesenchymal stem cells displaying neurogenic and osteogenic properties. Stem Cells and Development, 2010, vol. 19, no. 6, pp. 853–866. DOI: 10.1089/ scd.2009.0267

3. Antonevich N. G., Goncharov A. E., Chekan V. L., Sidorenko I. V., Kvacheva Z.B. Immunophenotypic characteristics of human nasal olfactory mesenchymal stem cells. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seriya meditsinskikh navuk = Proceedings of the National Academy of Sciences of Belarus. Мedical series, 2015, no. 1, pp. 42–49 (in Russian).

4. Antonevich N. G., Goncharov A. E., Chekan V.L. Immunosuppressive properties of cultured ectomesenchymal stem cells of human olfactory epithelium. Zdravoohranenie [Healthcare], 2014, no. 10, pp. 14–19 (in Russian).

5. Goncharov A. E., Antonevich N. G., Chekan V.L. Effect of human nasal olfactory mesenchymal stem cells on the antigenic profile of dendritic cells. Novosti mediko-biologicheskih nauk [News of Biomedical Sciences], 2015, vol. 10, no. 3, pp. 102–106 (in Russian).

6. Antonevich N. G., Goncharov A.E. Effect of mesenchymal stem cells of the olfactory lining of the human on the differentiation of macrophages ex vivo. Sovremennye problemy infekcionnoj patologii cheloveka [Modern problems of human infectious pathology], Ministry of Health of the Republic of Belarus, the Republican Scientific and Practical Center for Epidemiology and Microbiology, in Titov L. P. (ed.), electronic text dan, 1 electronic optical disk (DVD-ROM). Minsk, 2016, iss. 9, pp. 185–190 (in Russian).

7. Di Trapani M., Bassi G., Ricciardi M., Fontana E., Bifari F., Pacelli L., Giacomello L., Pozzobon M., Féron F., De Coppi P., Anversa P., Fumagalli G., Decimo I., Menard C., Tarte K., Krampera M. Comparative study of immune regulatory properties of stem cells derived from different tissues. Stem Cells and Development, 2013, vol. 22, no. 22, pp. 2990–3002. DOI: 10.1089/scd.2013.0204

8. Rui K., Zhang Z., Tian J., Lin X., Wang X., Ma J., Tang X., Xu H., Lu L., Wang S. Olfactory ecto-mesenchymal stem cells possess immunoregulatory function and suppress autoimmune arthritis. Cellular and Molecular Immunology, 2016, vol. 13, no. 3, pp. 401–408. DOI: 10.1038/cmi.2015.82

9. Tian J., Rui K., Tang X., Wang W., Ma J., Tian X., Wang Y., Xu H., Lu L., Wang S. IL-17 down-regulates the immunosuppressive capacity of olfactory ecto-mesenchymal stem cells in murine collagen-induced arthritis. Oncotarget, 2016, vol. 7, no. 28, pp. 42953–42962. DOI: 10.18632/oncotarget.10261

10. Yang C., Li J., Lin H., Zhao K., Zheng C. Nasal mucosa derived-mesenchymal stem cells from mice reduce inflammation via modulating immune responses. PLoS One, 2015, vol. 20, no. 11–12, p. e0118849. DOI: 10.1371/journal.pone.0118849

11. Sotiropoulou P. A., Perez S. A., Gritzapis A.D., Baxevanis C. N., Papamichail M. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells, 2006, vol. 24, no. 1, pp. 74–85. DOI: 10.1634/stemcells.2004–0359

12. Prevosto C., Zancolli M., Canevali P., Zocchi M. R., Poggi A. Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica, 2007, vol. 92, no. 7, pp. 881–888.

13. Patel S. A., Meyer J. R., Greco S. J., Corcoran K. E., Bryan M., Rameshwar P. Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. Journal of Immunology, 2010, vol. 184, no. 10, pp. 5885–5894. DOI: 10.4049/jimmunol.0903143

14. Karlsson H., Samarasinghe S., Ball L. M., Sundberg B., Lankester A. C., Dazzi F., Uzunel M., Rao K., Veys P., Le Blanc K., Ringdén O., Amrolia P.J. Mesenchymal stem cells exert differential effects on alloantigen and virus-specific T-cell responses. Blood, 2008, vol. 112, no. 3, pp. 532–541. DOI: 10.1182/blood-2007–10–119370

15. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop Dj., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International society for cellular therapy position statement. Cytotherapy, 2006, vol. 8, no. 4, pp. 315–317.

16. Koren’ S. V., Kabanova Ju. A., Antonevich N. G., Duzh E. V., Goncharov A. E., Gorbunov V. A., Shimanovich V.P. Collection of cultures of human and animal cells RRPC of epidemiology and microbiology: current state and prospects of development. Sovremennye problemy infekcionnoj patologii [Modern problems of human infectious pathology]. Minsk, 2015, iss. 8, pp. 162–168 (in Russian).

17. Hancharou A. Y., Duzh E. V., DuBuske L.M. Comparative profile of surface and intracellular molecule expression in 10 immortalized human T cell lines to be considered for immunomodulatory drug evaluations. Allergy, 2016, vol. 71, suppl. 102, p. 187.

18. Janeway C., Murphy K., Travers P., Walport M. Janeway’s Immunobiology. New York, 2017, ch. 9, pp. 345–395.

19. Alter G., Malenfant J. M., Altfeld M. CD107a as a functional marker for the identification of natural killer cell activity. Journal of Immunological Methods, 2004, vol. 294, no. 1/2, pp. 15–22. DOI: 10.1016/j.jim.2004.08.008

20. Brunner K. T., Mauel J., Cerottini J.C., Chapuis B. Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology, 1968, vol. 14, no. 2, pp. 181–196.

21. Scheibenbogen C., Romero P., Rivoltini L., Herr W., Schmittel A., Cerottini J. C., Woelfel T., Eggermont A. M., Keilholz U. Quantitation of antigen-reactive T cells in peripheral blood by IFNγ-ELISpot assay and chromium-release assay: a four-centre comparative trial. Journal of Immunological Methods, 2000, vol. 224, no. 1/2, pp. 81–89.

22. Schmittel A., Keilholz U., Thiel E., Scheibenbogen C. Quantification of tumor-specific T lymphocytes with the ELISpot assay. Journal of Immunotherapy, 2000, vol. 23, no. 3, pp. 289–295.

23. Derby E. G., Reddy V., Nelson E. L., Malyguine A. Correlation of human CD56+ cell cytotoxicity and IFN-γ production. Cytokine, 2001, vol. 13, no. 2, pp. 85–90. DOI: 10.1006/cyto.2000.0804

24. Rininsland F. H., Helms T., Asaad R. J., Boehm B. O., Tary-Lehmann M. Granzyme B ELISpot assay for ex vivo measurements of T cell immunity. Journal of Immunological Methods, 2000, vol. 240, no. 1/2, pp. 143–155.

25. Shafer-Weaver K., Rosenberg S., Strobl S., Gregory Alvord W., Baseler M., Malyguine A. Application of the granzyme B ELISPOT assay for monitoring cancer vaccine trials. Journal of Immunotherapy, 2006, vol. 29, no. 3, pp. 328–335. DOI: 10.1097/01.cji.0000203079.35612.c8

26. Maecker H.T. Multiparameter flow cytometry monitoring of T cell responses. Methods in Molecular Biology, 2009, vol. 485, no. 3, pp. 375–391. DOI: 10.1007/978–1-59745–170–3_25

27. Zaritskaya L., Shurin M. R., Sayers T. J., Malyguine A.M. New flow cytometric assays for monitoring cell-mediated cytotoxicity. Expert Review of Vaccines, 2010, vol. 9, no. 6, pp. 601–616. DOI: 10.1586/erv.10.49

28. Noto A., Nqauv P., Trautmann L. Cell-based flow cytometry assay to measure cytotoxic activity. Journal of Visualized Experiments, 2013, no. 82, p. e51105. DOI: 10.3791/51105


Review

For citations:


Antonevich N.H., Hancharou A.Y., Buschik O.V., Rynda A.G., Chekan V.L., Strinkevich E.A. SUPPRESSION OF CD8+ T-LYMPHOCYTES AND NATURAL KILLER CELLS CYTOTOXIC FUNCTION BY HUMAN OLFACTORY MUCOSA-DERIVED MESENCHYMAL STEM CELLS. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2017;(4):7-16. (In Russ.)

Views: 1209


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)