1. Clark T. E., Lillie M. A., Vogl A. W., Gosline J. M., Shadwick R. E. Mechanical contribution of lamellar and inter- lamellar elastin along the mouse aorta. Journal of Biomechanics, 2015, vol. 48, iss. 13, pp. 3599-3605. doi. org/10.1016/j. jbiomech.2015.08.004.
2. Farand P., Garon A., Plante G. E. Structure of large arteries: Orientation of elastin in rabbit aortic internal elastic lamina and in the elastic lamellae of aortic media. Microvascular Research, 2007, vol. 73, iss. 2, pp. 95-99. doi. org/10.1016/j. mvr.2006.10.005.
3. Katsimpoulas M., Morticelli L., Michalopoulos E., Gontika I., Stavropoulos-Giokas C., Kostakis A., Haverich A., Korossis S. Investigation of the biomechanical integrity of decellularized rat abdominal aorta. Transplantation Proceedings, 2015, vol. 47, iss. 4, pp. 1228-1233. doi. org/10.1016/j. transproceed.2014.11.061.
4. Yunjie Wang, Shahrokh Zeinali-Davarani, Yanhang Zhang. Arterial mechanics considering the structural and mecha- nical contributions of ECM constituents. Journal of Biomechanics, 2016, vol. 49, iss. 12, pp. 2358-2365. doi. org/10.1016/j. jbiomech.2016.02.027.
5. Novikova E. G., Galankina I. E. Age-related morphological changes in the aortic wall in dissecting aneurysm. Arkhiv patologii [Archive of Pathology], 2015, vol. 77, no. 1, pp. 18-22. (in Russian).
6. Blomgren Bo, Göktürk Camilla. A novel method for quantification of the folding of elastic laminae in elastic arteries. Micron, 2008, vol. 39, iss. 5, pp. 623-630. doi. org/10.1016/j. micron.2007.03.010.
7. Humphrey J. D., Holzapfel G. A. Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. Journal of Biomechanics, vol. 45, iss. 5, pp. 805-814. doi. org/10.1016/j. jbiomech.2011.11.021.
8. Martufi G., Gasser T. C. Histo-mechanical modeling of the wall of abdominal aorta aneurysms. IFAC Proceedings Volumes, 2012, vol. 45, iss. 2, pp. 1035-1040. doi. org/10.3182/20120215-3-AT-3016.00183.