Preview

Proceedings of the National Academy of Sciences of Belarus, Medical series

Advanced search

Structural and functional features of Nox2-NAD(P)H-oxidase

Abstract

In the context of the development of ways and means to control the redox-dependent processes in the human body, the present article deals with the history of the scientific ideas of Nox2-NADPH oxidase (Е.С.1.6.3.1, Nox2) - one of the most important biological generator of reactive oxygen species (ROS), the current understanding of the peculiarities of localization and molecular structure of the enzyme complex, the spectrum, and the biological significance of reactive oxygen species generated by its participation.

About the Author

N. A. Bizunok
Belarusian State Medical University
Belarus


References

1. Baldridge, C. W. The extra respiration of phagocytosis / C. W. Baldridge, R. W. Gerard // Am. J. Physiol. - 1933. -Vol. 103. - P. 235-236.

2. Sbarra, A. J. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes / A. J. Sbarra, M. L. Karnovsky // J. Biol. Chem. - 1959. - Vol. 234. - P. 1355-1362.

3. Biochemical aspects of phagocytosis / G. Y. N. Iyer [et al.] // Nature. - 1961. - Vol. 192. - P. 535-542.

4. Rossi, F. Biochemical aspects of phagocytosis in polymorphonuclear leucocytes. NADH and NADPH oxidation by the granules of resting and phagocytizing cells / F. Rossi, M. Zatti // Experientia. - 1964. - Vol. 20. - P. 21-23.

5. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent / B. M. Babior [et al.] // J. Clin. Invest. - 1973. - Vol. 52. - P. 741-744.

6. A fatal granulomatosus of childhood: the clinical study of a new syndrome / H. Berendes [et al.] // Minn. Med. - 1957. - Vol. 40. - P. 309-312.

7. In vitro bactericidal capacity of human polymorphonuclear leukocytes: diminished activity in chronic granulomatous disease of childhood / P. G. Quie [et al.] // J. Clin. Invest. - 1967. - Vol. 46. - P. 668-679.

8. Segal, A. W. Novel cytochrome b system in phagocytic vacuoles of human granulocytes / A. W. Segal, O. T. Jones // Nature. - 1978. - Vol. 276. - P. 515-517.

9. Absence of a newly described cytochrome b from neutrophils of patients with chronic granulomatous disease / A. W. Segal [et al.] // Lancet. - 1978. - Vol. 2. - P. 446-449.

10. Cloning the gene for an inherited human disorder-chronic granulomatous disease-on the basis of its chromosomal location / B. Royer-Pokora [et al.] // Nature. - 1986. - Vol. 322. - P. 32-38.

11. The X-linked chronic granulomatous disease gene codes for the beta-chain of cytochrome b-245 / C. Teahan [et al.] // Nature. - 1987. - Vol. 327. - P. 720-721.

12. The glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex / M. C. Dinauer [et al.] // Nature. - 1987. - Vol. 327. - P. 717-720.

13. Two cytosolic neutrophil oxidase components absent in autosomal chronic granulomatous disease / B. D. Volpp [et al.] // Science. - 1988. - Vol. 242. - P. 1295-1297.

14. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1 / A. Abo [et al.] // Nature. - 1991. -Vol. 353. - P. 668-670.

15. P40phox, a third cytosolic component of the activation complex of the NADPH oxidase to contain SRC homology 3 domains / F. B. Wientjes [et al.] // Biochem. J. - 1993. - Vol. 296. - P. 557-561.

16. Identification of a superoxide-generating NADPH oxidase system in human fibroblasts / B. Meier [et al.] // Biochemistry. - 1991. - Vol. J 275. - P. 241-245.

17. Szatrowski, T. P. Production of large amounts of hydrogen peroxide by human tumor cells / T. P. Szatrowski, C. F. Nathan // Cancer Res. - 1991. - Vol. 51. - P. 794-798.

18. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells / K. K. Griendling [et al.] // Circ. Res. - 1994. - Vol. 74. - P. 1141-1148.

19. Cell transformation by the superoxide-generating oxidase Mox1 / Y. A. Suh [et al.] // Nature. - 1999. - Vol. 401. - P. 79-82.

20. A mammalian H+ channel generated through alternative splicing of the NADPH oxidase homolog NOH-1 / B. Banfi [et al.] // Science. - 2000. - Vol. 287. - P. 138-142.

21. Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, Nox5 / G. Cheng [et al.] // Gene. - 2001. -Vol. 269. - P. 131-140.

22. Identification of renox, an NAD(P)H oxidase in kidney / M. Geiszt [et al.] // Proc. Natl. Acad. Sci. USA. - 2000. - Vol. 97. - P. 8010-8014.

23. A Ca(2+)-activated NADPH oxidase in testis, spleen, lymph nodes / B. Banfi [et al.] // J. Biol. Chem. - 2001. - Vol. 276. - P. 37594-37601.

24. Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family / X. De Deken [et al.] // J. Biol. Chem. - 2000. - Vol. 275. - P. 23227-23233.

25. Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cDNAs / C. Dupuy [et al.] // J. Biol. Chem. - 1999. - Vol. 274. - P. 37265-37269.

26. Two novel proteins activate superoxide generation by the NADPH oxidase NOX1 / B. Banfi [et al.] // J. Biol. Chem. -2003. - Vol. 278. - P. 3510-3513.

27. Grasberger, H. Identification of the maturation factor for dual oxidase: evolution of an eukaryotic operon equivalent / H. Grasberger, S. Refetoff // J. Biol. Chem. - 2006. - Vol. 281. - P. 18269-18272.

28. Molecular composition and regulation of the Nox family NAD(P)H oxidases / H. Sumimoto [et al.] // Biochem. Biophys. Res. Commun. - 2005. - Vol. 338. - P. 677-686.

29. Bedard, K. The Nox Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology / K. Bedard, K.-H. Krause // Physiol. Rev. - 2007. - Vol. 87. - P. 245-313.

30. Asparagine-linked glycosylation of cytochrome b558 large subunit varies in different human phagocytic cells / M. E. Kleinberg [et al.] // J. Immunol. - 1989. - Vol. 143. - P. 4152-4157.

31. Babior, B. M. Superoxide-forming enzyme from human neutrophils: evidence for a flavin requirement / B. M. Babior, R. S. Kipnes // Blood. - 1977. - Vol. 50. - P. 517-524.

32. Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase / D. Rotrosen [et al.] // Science. -1992. - Vol. 256. - P. 1459-1462.

33. Superoxide production by cytochrome b559: mechanism of cytosol-independent activation / V. Koshkin [et al.] // FEBS Lett. - 1994. - Vol. 338. - P. 285-289.

34. Groemping, Y. Activation and assembly of the NADPH oxidase: a structural perspective / Y. Groemping, K. Rittinger // Biochem. J. - 2005. - Vol. 386 (Pt 3). - P. 401-416.

35. Stoichiometry of p22phox and gp91phox in phagocyte cytochrome b558 / J. Huang [et al.] // Biochemistry. - 1995. - Vol. 34. -P. 16753-16757.

36. Biosynthesis of flavocytochrome b558: gp91phox is synthesized as a 65-kDa precursor (p65) in the endoplasmic reticulum / L. Yu [et al.] // J. Biol. Chem. - 1999. - Vol. 274. - P. 4364-4369.

37. Biosynthesis of the phagocyte NADPH oxidase cytochrome b558: role of heme incorporation and heterodimer formation in maturation and stability of gp91phox and p22phox subunits / L. Yu [et al.] // J. Biol. Chem. - 1997. - Vol. 272. - P. 27288-27294.

38. Point mutation in the cytoplasmic domain of the neutrophil p22phox cytochrome b subunit is associated with a nonfunctional NADPH oxidase and chronic granulomatous disease / M. C. Dinauer [et al.] // Proc. Natl. Acad. Sci. USA. -1991. - Vol. 88. - P. 11231-11235.

39. Pro^Gln substitution in the light chain of cytochrome b558 of the human NADPH oxidase (p22phox) leads to defective translocation of the cytosolic proteins p47phox and p67phox / J. H. Leusen [et al.] // J. Exp. Med. - 1994. -Vol. 180. - P. 2329-2334.

40. Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets / T. L. Leto [et al.] // Proc. Natl. Acad. Sci. USA. - 1994. - Vol. 91. - P. 10650-10654.

41. Phosphorylation of p22phox is mediated by phospholipase D-dependent and independent mechanisms: correlation of NADPH oxidase activity and p22phox phosphorylation / D. S. Regier [et al.] // J. Biol. Chem. - 2000. - Vol. 275. - P. 28406-28412.

42. Activation of bovine neutrophil oxidase in a cell free system: GTP-dependent formation of a complex between a cytosolic factor and a membrane protein / J. Doussiere [et al.] // Biochem. Biophys. Res. Commun. - 1988. - Vol. 152. - P. 993-1001.

43. Dinauer, M. C. Regulation of neutrophil function by Rac GTPases / M. C. Dinauer // Curr. Opin. Hematol. - 2003. -Vol. 10. - P. 8-15.

44. Etienne-Manneville, S. Rho GTPases in cell biology / S. Etienne-Manneville, A. Hall // Nature (London). - 2002. - Vol. 420. - P. 629-635.

45. The GTPase superfamily: conserved structure and molecular mechanism / H. R. Bourne [et al.] // Nature (London). -1991. - Vol. 349. - P. 117-127.

46. The GTPase superfamily: a conserved switch for diverse cell functions / H. R. Bourne [et al.] // Nature (London). - 1990. - Vol. 348. - P. 125-132.

47. Vetter, I. R. The guanine nucleotide-binding switch in three dimensions / I. R.Vetter, A. Wittinghofer // Science. - 2001. - Vol. 294. - P. 1299-1304.

48. The GTP binding motif: variations on a theme / M. Kjeldgaard [et al.] // FASEB J. - 1996. - Vol. 10. - P. 1347-1368.

49. Sprang, S. R. G protein mechanisms: insights from structural analysis / S. R. Sprang // Annu. Rev. Biochem. - 1997. - Vol. 66. - P. 639-678.

50. The Rac-RhoGDI complex and the structural basis for the regulation of Rho proteins by RhoGDI / K. Scheffzek [et al.] // Nat. Struct. Biol. - 2000. - Vol. 7. - P. 122-126.

51. The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways / C. Tarricone [et al.] // Nature (London). - 2001. - Vol. 411. - P. 215-219.

52. Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI / G. R. Hoffman [et al.] // Cell. - 2000. - Vol. 100. - P. 345-356.

53. Targeting of Rac1 to the phagocyte membrane is sufficient for the induction of NADPH oxidase assembly / Y. Gorzalczany [et al.] // J. Biol. Chem. - 2000. - Vol. 275. - P. 40073-40081.

54. P-Rex1, a PtdIns(3,4,5)P3- and Gpy-regulated guanine-nucleotide exchange factor for Rac / H. C. Welch [et al.] // Cell. - 2002. - Vol. 108. - P. 809-821.

55. The hemopoietic Rho / Rac guanine nucleotide exchange factor Vav1 regulates N-formyl-methionyl-leucyl-phenylalanine-activated neutrophil functions / C. Kim [et al.] // J. Immunol. - 2003. - Vol. 171. - P. 4425-4430.

56. Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense / A. W. Roberts [et al.] // Immunity. - 1999. - Vol. 10. - P. 183-196.

57. Localization of Rac2 via the C terminus and aspartic acid 150 specifies superoxide generation, actin polarity and chemotaxis in neutrophils / M. D. Filippi [et al.] // Nat. Immunol. - 2004. - Vol. 5. - P. 744-751.

58. Regulation of the human neutrophil NADPH oxidase by rho-related G-proteins / C. H. Kwong [et al.] // Biochemistry. -1993. - Vol. 32. - P. 5711-5717.

59. Antagonistic cross-talk between Rac and Cdc42 GTPases regulates generation of reactive oxygen species / B. A. Diebold [et al.] // J. Biol. Chem. - 2004. - Vol. 279. - P. 28136-28142.

60. Characterization of the effector-specifying domain of Rac involved in NADPH oxidase activation / C. H. Kwong [et al.] // J. Biol. Chem. - 1995. - Vol. 270. - P. 19868-19872.

61. Shalom-Barak, T. A p21-activated kinase-controlled metabolic switch up-regulates phagocyte NADPH oxidase / T. Shalom-Barak, U. G. Knaus // J. Biol. Chem. - 2002. - Vol. 277. - P. 40659-40665.

62. NADPH oxidase activity of neutrophil-specific granules: requirements for cytosolic components and evidence of assembly during cell activation / D. R. Ambruso [et al.] // Mol. Genet. Metab. - 2004. - Vol. 81. - P. 313-321.

63. Ponting, C. P. Novel domains in NADPH oxidase subunits, sorting nexins, and Ptdlns 3-kinases: binding partners of SH3 domains? / C. P. Ponting // Protein Sci. - 1996. - Vol. 5. - P. 2353-2357.

64. The PX domains of p47phox and p40phox bind to lipid products of PI(3)K / F. Kanai [et al.] // Nat. Cell. Biol. - 2001. - Vol. 3. - P. 675-678.

65. Quinn, M. T. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases / M. T. Quinn, K. A. Gauss // J. Leukocyte Biol. - 2004. - Vol. 76. - P. 760-781.

66. Phosphorylation of p47phox sites by PKC a, |3n, 5, and Z: effect on binding to p22phox and on NADPH oxidase activation / A. Fontayne [et al.] // Biochemistry. - 2002. - Vol. 41. - P. 7743-7750.

67. Activation of the leukocyte NADPH oxidase by phorbol ester requires the phosphorylation of p47PHOX on serine 303 or 304 / O. Inanami [et al.] // J. Biol. Chem. - 1998. - Vol. 273. - P. 9539-9543.

68. The NADPH oxidase components p47phox and p40phox bind to moesin through their PX domain / F. B. Wientjes [et al.] Biochem. Biophys. Res. Commun. - 2001. - Vol. 289. - P. 382-388.

69. P47phox PX domain of NADPH oxidase targets cell membrane via moesin-mediated association with the actin cytoskeleton / Y. Zhan [et al.] // J. Cell. Biochem. - 2004. - Vol. 92. - P. 795-809.

70. Blatch, G. L. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions / G. L. Blatch, M. Lassle // BioEssays. - 1999. - Vol. 21. - P. 932-939.

71. Tetratricopeptide repeat (TPR) motifs of p67phox participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase / H. Koga [et al.] // J. Biol. Chem. - 1999. - Vol. 274. - P. 25051-25060.

72. NADPH dehydrogenase activity of p67phox, a cytosolic subunit of the leukocyte NADPH oxidase / P. M. Dang [et al.] // Biochemistry. - 1999. - Vol. 38. - P. 5746-5753.

73. The adaptor protein p40phox as a positive regulator of the superoxide-producing phagocyte oxidase / F. Kuribayashi [et al.] // EMBO J. - 2002. - Vol. 21. - P. 6312-6320.

74. Han, C. H. Activation domain in p67phox regulates the steady state reduction of FAD in gp91phox / C. H. Han, M. H. Lee // J. Vet. Sci. - 2000. - Vol. 1. - P. 27-31.

75. Phosphorylation of the NADPH oxidase component p67phox by ERK2 and P38MAPK: selectivity of phosphorylated sites and existence of an intramolecular regulatory domain in the tetratricopeptide-rich region / P. M. Dang [et al.] // Biochemistry. - 2003. - Vol. 42. - P. 4520-4526.

76. A novel cytosolic component, p40phox, of respiratory burst oxidase associates with p67phox and is absent in patients with chronic granulomatous disease who lack p67phox / S. Tsunawaki [et al.] // Biochem. Biophys. Res. Commun. - 1994. -Vol. 199. - P. 1378-1387.

77. P40phox, a third cytosolic component of the activation complex of the NADPH oxidase to contain src homology 3 domains / F. B. Wientjes [et al.] // Biochem. J. - 1993. - Vol. 296. - P. 557-561.

78. Mapping the domains of interaction of p40phox with both p47phox and p67phox of the neutrophil oxidase complex using the two-hybrid system / A. Fuchs [et al.] // J. Biol. Chem. - 1995. - Vol. 270. - P. 5695-5697.

79. P40phox down-regulates NADPH oxidase activity through interactions with its SH3 domain / M. Sathyamoorthy [et al.] // J. Biol. Chem. - 1997. - Vol. 272. - P. 9141-9146.

80. Cross, A. R. P40phox participates in the activation of NADPH oxidase by increasing the affinity of p47phox for flavocytochrome b558 / A. R. Cross // Biochem. J. - 2000. - Vol. 349. - P. 113-117.

81. Inflamation: basic principles and clinical correlates / eds. John I. Gallin, Ira M. Goldstein, Ralph Snyderman. -2nd ed. - New York: Raven Press, 1992. - 1186 p.

82. Reactive oxygen species: Oxidative damage and pathogenesis / U. Bandyopadhyay [et al.] // Curr. Sci. - 1999. -Vol. 77. - N. 5. - Р. 658-666.

83. Forman, H. J. Reactive oxygen species and cell signaling. respiratory burst in macrophage signaling / H. J. Forman, M. Torres // Am. J. Respir. Crit. Care Med. - 2002. - Vol. 166. - Р. S4-S8.

84. Hoidal, J. R. Reactive oxygen species and cell signaling / J. R. Hoidal // Am. J. Respir. Cell Mol. Biol. - 2001. -Vol. 25. - Р. 661-663.

85. Cave, A. C. NADPH Oxidases in Cardiovascular Health and Disease / A. C. Cave // Antioxidants and redox signaling. -2006. - Vol. 8, N 5/6. - Р. 691-728.

86. Li, C. H. Reactive species mechanisms of cellular hypoxiareoxygenation injury / C. H. Li, R. M. Jackson // Am. J. Physiol. Cell Physiol. - 2002. - Vol. 282. - Р. C227-C241.

87. Acker, T. Cellular oxygen sensing need in CNS function: physiological and pathological implications / T. Acker, H. Acker // The J. of Exp. Biol. - 2004. - Vol. 207. - Р. 3171-3188.

88. Harman, D. Aging: a theory based on free radical and radiation chemistry / D. Harman // J. Gerontol. - 1956. -Vol. 11. - P. 298-300.

89. Jones, D. P. Radical-free biology of oxidative stress / D. P. Jones // Am. J. Physiol. Cell Physiol. - 2008. - Vol. 295. -Р. C849-C868.

90. Октябрьский, О. Н. Редокс-регуляция клеточных функций / О. Н. Октябрьский, Г. В. Смирнова // Биохимия. -2007. - Т. 72. - Вып. 2. - С. 158-174.

91. Капелько, В. И. Редокс-регуляция ритма сердца / В. И. Капелько // Биохимия. - 2012. - № 11. - С. 1491-1503.

92. Редокс-регуляция клеточной активности: концепции и механизмы / С. Н. Черенкевич [и др.] // Вес. НАН Беларуси Сер. бiял. навук. - 2013. - № 1. - С. 92-108.

93. Калинина, Е. В. Роль глутатиона, глутатионтрансферазы и глутаредоксина в регуляции редокс-зависимых процессов / Е. В. Калинина, Н. Н. Чернов, М. Д. Новичкова // Успехи биол. химии. - 2014. - Т. 54. - С. 299-348.

94. Парфенов, Э. П. Редокс-регуляция как надежная платформа поиска и разработки лекарственных средств нового типа. Поиск гастропротекторов среди замещенных кумаринов / Э. П. Парфенов, В. А. Трапков, П. Д. Шабанов // Обзоры по клин. фармакологии и лекарств. терапии. - 2014. - № 12. - С. 22-42.


Review

For citations:


Bizunok N.A. Structural and functional features of Nox2-NAD(P)H-oxidase. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2016;(1):117-128. (In Russ.)

Views: 787


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)