Comparative analysis of the efficiency of osteogenesis in peri-implant defect using scaffolds based on collagen, tricalcium phosphate and porous hydroxyapatite ceramics
https://doi.org/10.29235/1814-6023-2025-22-2-119-133
Abstract
To evaluate the effectiveness of osteogenesis in the peri-implant defect using different scaffold matrices, it is necessary to perform accurate informative studies such as scanning electron microscopy and spectral analysis.
Objective: to study the structure and elemental composition of bone tissue on the surface of dental implants in the periimplant defect after the introduction of scaffolds based on a spongy-cortical mixture of allogeneic origin, collagen, and hydroxyapatite/β-tricalcium phosphate with pre-implanted ectomesenchymal cells.
On the obtained peri-implantitis model in 12 experimental one-year-old North Caucasian sheep, surgical treatment of the peri-implant defect was performed using scaffolds on a matrix of spongy-cortical mixture of allogeneic origin (group 1), collagen (group 2), and hydroxyapatite/β-tricalcium phosphate (group 3). Dental implants with SA-surface (1 subgroup in each group) and CA-surface (2 subgroup in each group) were installed. Scanning electron microscopy and spectral analysis were performed 3 months after extraction of dental implants together with bone regenerate.
Microelement composition of bone regenerate around dental implants of group 2 of subgroup 2 differed significantly from the composition of other samples. Content by weight of oxygen (53.9 %), calcium (11.36 %), phosphorus (7.04 %) corresponds to the composition of calcium hydroxyapatite, which indicates high mineralization of newly formed bone tissue.
The most effective osteogenesis was noted in the subgroup 2 of group 2, where the organic component – collagen – acted as a matrix for the scaffold.
About the Authors
S. P. RubnikovichBelarus
Sergey P. Rubnikovich – Corresponding Member, D. Sc. (Med.), Professor, Rector.
83, Dzerzhinski Ave., 220116, Minsk
S. V. Sirak
Russian Federation
Sergey V. Sirak – D. Sc. (Med.), Professor, Head of the Department.
310, Mira Str., 355017, Stavropol
Yu. L. Denisova
Belarus
Yuliya L. Denisova – D. Sc. (Med.), Professor.
83, Dzerzhinski Ave., 220116, Minsk
M. G. Perikova
Russian Federation
Maria G. Perikova – Ph. D. (Med.), Associate Professor.
310, Mira Str., 355017, Stavropol
V. N. Lenev
Russian Federation
Vadim N. Lenev ‒ Ph. D. (Med.), Associate Professor.
310, Mira Str., 355017, Stavropol
N. I. Bykova
Russian Federation
Nataliya I. Bykova ‒ D. Sс. (Med.), Associate Professor.
4, Sedin Str., 350063, Krasnodar
A. V. Arutyunov
Russian Federation
Armenak V. Arutyunov ‒ D. Sс. (Med.), Associate Professor, Head of the Department.
4, Sedin Str., 350063, Krasnodar
V. B. Shovgenov
Russian Federation
Vyacheslav B. Shovgenov ‒ Postgraduate student.
4, Sedin Str., 350063, Krasnodar
References
1. Wüster J., Neckel N., Sterzik F., Xiang-Tischhauser L., Barnewitz D., Genzel A. [et al.]. Effect of a synthetic hydroxyapatite-based bone grafting material compared to established bone substitute materials on regeneration of criticalsize bone defects in the ovine scapula. Regenerative Biomaterials, 2024, vol. 11, p. rbae041. https://doi.org/10.1093/rb/rbae041
2. Jepsen S., Schwarz F., Cordaro L., Derks J., Hämmerle C. H. F., Heitz-Mayfield L. J. [et al.]. Regeneration of alveolar ridge defects. Consensus report of group 4 of the 15th European workshop on periodontology on bone regeneration. Journal of Clinical Periodontology, 2019, vol. 21, suppl. 21, pp. 277–286. https://doi.org/10.1111/jcpe.13121
3. Tang Y.-L., Yuan J., Song Y.-L., Ma W., Chao X., Li D.-H. Ridge expansion alone or in combination with guided bone regeneration to facilitate implant placement in narrow alveolar ridges: a retrospective study. Clinical Oral Implants Research, 2015, vol. 26, no. 2, pp. 204–211. https://doi.org/10.1111/clr.12317
4. Rubnikovich S. P., Khomich I. S. Regenerative dental technologies in complex surgical and orthopedic rehabilitation of patients with dental defects. Stomatolog [Dentist], 2020, no. 2, pp. 38–50 (in Russian).
5. Baldwin P., Li D. J., Auston D. A., Mir H. S., Yoon R. S., Koval K. J. Autograft, allograft, and bone graft substitutes: clinical evidence and Indications for use in the setting of orthopaedic trauma surgery. Journal of Orthopaedic Trauma, 2019, vol. 33, no. 4, pp. 203–213. https://doi.org/10.1097/BOT.0000000000001420
6. Shchetinin E. V., Sirak S. V., Grigor’yants L. A., Vafiadi M. Yu., Dilekova O. V., Petrosyan G. G., Parazyan L. A., Gatilo Yu. Yu., Adamchik A. A. Reparative regeneration of periodontal tissues – results of an experimental study. Meditsinskii vestnik Severnogo Kavkaza [Medical Bulletin of the North Caucasus], 2015, vol. 4, no. 10, pp. 411–415 (in Russian). https://doi.org/10.14300/mnnc.2015.10100
7. Rubnikovich S. P., Khomich I. S. Denisova Yu. L. Morphological changes in bone tissue around dental implants after low-intensity ultrasound applications. Vestsi Natsyyanal’nai akademii navuk Belarusi. Serуya medуtsynskikh navuk = Proceedings of the National Academy of Sciences of Belarus. Medical series, 2020, vol. 17, no. 1, pp. 20–27.
8. Shang L., Shao J., Ge S. Immunomodulatory properties: the accelerant of hydroxyapatite-based materials for bone regeneration. Tissue Engineering, Part C: Methods, 2022, vol. 28, no. 8, pp. 377–392. https://doi.org/10.1089/ten.TEC.2022.00111112
9. Arcos D., Vallet-Regí M. Substituted hydroxyapatite coatings of bone implants. Journal of Materials Chemistry B, 2020, vol. 8, no. 9, pp. 1781–1800. https://doi.org/10.1039/c9tb02710f
10. Grimm W. D., Arnold W. A., Sirak S. W., Vukovich M. A., Videra D., Giesenhagen B. Clinical, radiographic, and histological analyses after transplantation of crest-related palatal-derived ectomesenchymal stem cells (paldscs) for improving vertical alveolar bone augmentation in critical size alveolar defects. Journal of Clinical Periodontology, 2015, vol. 42, no. S17, poster P0986, p. 366.
11. Lee J. H., Yi G. S., Lee J. W., Kim D. J. Physicochemical characterization of porcine bone-derived grafting material and comparison with bovine xenografts for dental applications. Journal of Periodontal and Implant Science, 2017, vol. 47, no. 6, pp. 388–401. https://doi.org/10.5051/jpis.2017.47.6.388
12. Wickramasinghe M. L., Dias G. J., Premadasa K. M. G. P. A novel classification of bone graft materials. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 2022, vol. 110, no. 7, pp. 1724–1749. https://doi.org/10.1002/jbm.b.35029
13. Owen G., Dard M., Larjava H. Hydoxyapatite/beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 2018, vol. 106, no. 6, pp. 2493–2512. https://doi.org/10.1002/jbm.b.34049
14. Bikuna-Izagirre M., Aldazabal J., Paredes J. Gelatin blends enhance performance of electrospun polymeric scaffolds in comparison to coating protocols. Polymers, 2022, vol. 14, no. 7, art. 1311. https://doi.org/10.3390/polym14071311
15. Grigor’yants L. A., Gerchikov L. N., Badalyan V. A., Sirak S. V., Grigor’yants A. G. Use of the drug Tsifran ST in surgical dentistry for the treatment and prevention of postoperative inflammatory complications. Stomatologiya dlya vsekh [Dentistry for all], 2006, no. 2, pp. 14–16 (in Russian).
16. Duan M., Ma S., Song C., Li J., Qian M. Three-dimensional printing of a β-tricalcium phosphate scaffold with dual bioactivities for bone repair. Ceramics International, 2021, vol. 47, no. 4, pp. 4775–4782. https://doi.org/10.1016/j.ceramint.2020.10.047
17. Gautam S., Sharma C., Purohit S. D., Singh H., Dinda A. K., Potdar P. D., Chou C. F., Mishra N. C. Gelatin-polycaprolactone-nanohydroxyapatite electrospun nanocomposite scaffold for bone tissue engineering. Materials Science and Engineering. C, Materials for biological applications, 2021, vol. 119, art. 111588. https://doi.org/10.1016/j.msec.2020.111588
18. Knabe C., Stiller M., Kampschulte M., Wilbig J., Peleska B., Günster J. [et al.]. A tissue engineered 3D printed calcium alkali phosphate bioceramic bone graft enables vascularization and regeneration of critical-size discontinuity bony defects in vivo. Frontiers in Bioengineering and Biotechnology, 2023, vol. 11, art. 1221314. https://doi.org/10.3389/fbioe.2023.1221314
19. Ahlhelm M., Latorre S. H., Mayr H. O., Storch C., Freytag C., Werner D., Schwarzer-Fischer E., Seidenstücker M. Mechanically stable β-TCP structural hybrid scaffolds for potential bone replacement. Journal of Composites Science, 2021, vol. 5, no. 10, art. 281. https://doi.org/10.3390/jcs5100281
20. Biscaia S., Branquinho M. V., Alvites R. D., Fonseca R., Sousa A. C., Pedrosa S. S. [et al.]. 3D printed poly (Caprolactone)/Hydroxyapatite scaffolds for bone tissue engineering: A comparative study on composite preparation by melt blending or solvent casting techniques and influence of bioceramic content on scaffold properties. International Journal of Molecular Sciences, 2022, vol. 23, no. 4, art. 2318. https://doi.org/10.3390/ijms23042318
21. Genova T., Roato I., Carossa M., Motta C., Cavagnetto D., Mussano F. Advances on bone substitutes through 3D bioprinting. International Journal of Molecular Sciences, 2020, vol. 21, no. 19, art. 7012. https://doi.org/10.3390/ijms21197012
22. Cao C., Huang P., Prasopthum A., Parsons A. J., Ai F., Yang J. Characterisation of bone regeneration in 3D printed ductile PCL/PEG/hydroxyapatite scaffolds with high ceramic microparticle concentrations. Biomaterials Science, 2022, vol. 10, no. 1, pp. 138–152. https://doi.org/10.1039/d1bm01645h
23. Huber F., Vollmer D., Vinke J., Riedel B., Zankovic S., Schmal H., Seidenstuecker M. Influence of 3D printing parameters on the mechanical stability of PCL scaffolds and the proliferation behavior of bone cells. Materials, 2022, vol. 15, no. 6, art. 2091. https://doi.org/10.3390/ma15062091
24. El-Habashy S. E., El-Kamel A. H., Essawy M. M., Abdelfattah E. Z. A., Eltaher H. M. Engineering 3D-printed coreshell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone regeneration. Biomaterials Science, 2021, vol. 9, no. 11, pp. 4019–4039. https://doi.org/10.1039/d1bm00062d
25. Rubnikovich S. P., Denisova Yu. L., Vladimirskaya T. E., Andreeva V. A., Kvacheva Z. B., Panasenkova G. Yu., Volotovskii I. D. Regenerative cell technologies for gingival recession treatment. Sovremennye tekhnologii v meditsine = Modern technologies in medicine, 2018, vol. 10, vol. 4, pp. 94–104 (in Russian).
26. Cai S., Wu C., Yang W., Liang W., Yu H., Liu L. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnology Reviews, 2020, vol. 1, no. 9, pp. 971–989. https://doi.org/10.1515/ntrev-2020-0076
27. Bernatskiy B. S., Puišys A. A novel approach for implant rehabilitation combined with immediate bone and softtissue augmentation in a compromised socket-A B2S approach: case report with a 2-year follow-up. Case Reports in Dentistry, 2023, vol. 2023, art. 1376588. https://doi.org/10.1155/2023/1376588
28. Zaki J., Yusuf N., El-Khadem A., Scholten R. J. P. M., Jenniskens K. Efficacy of bone-substitute materials use in immediate dental implant placement: a systematic review and meta-analysis. Clinical Implant Dentistry and Related Research, 2021, vol. 23, no. 4, pp. 506–519. https://doi.org/10.1111/cid.13014
29. Sala Y. M., Lu H., Chrcanovic B. R. Clinical outcomes of maxillary sinus floor perforation by dental implants and sinus membrane perforation during sinus augmentation: a systematic review and meta-analysis. Journal of Clinical Medicine, 2024, vol. 13, no. 5, art. 1253. https://doi.org/10.3390/jcm13051253
30. Thoma D. S., Bienz S. P., Figuero E., Jung R. E., Sanz-Martín I. Efficacy of lateral bone augmentation performed simultaneously with dental implant placement: a systematic review and meta-analysis. Journal of Clinical Periodontology, 2019, vol. 46, no. 21, pp. 257–276. https://doi.org/10.1111/jcpe.13050
31. Beheshtizadeh N., Gharibshahian M., Pazhouhnia Z., Rostami M., Zangi A. R., Maleki R. [et al.]. Commercialization and regulation of regenerative medicine products: Promises, advances and challenges. Biomedicine and Pharmacotherapy, 2022, vol. 153, art. 113431. https://doi.org/10.1016/j.biopha.2022.113431
32. Lei B., Gao X., Zhang R., Yi X., Zhou, Q. In situ magnesium phosphate/polycaprolactone 3D-printed scaffold induce bone regeneration in rabbit maxillofacial bone defect model. Materials and Design, 2022, vol. 215, art. 110477. https://doi.org/10.1016/j.matdes.2022.110477
33. Maleki-Ghaleh H., Hossein Siadati M., Fallah A., Zarrabi A., Afghah F., Koc B. [et al.]. Effect of zinc-doped hydroxyapatite/graphene nanocomposite on the physicochemical properties and osteogenesis differentiation of 3D-printed polycaprolactone scaffolds for bone tissue engineering. Chemical Engineering Journal, 2021, vol. 426, art. 131321. https://doi.org/10.1016/j.cej.2021.131321
34. Metwally S., Ferraris S., Spriano S., Krysiak Z. J., Kaniuk Ł., Marzec M. M. [et al.]. Surface potential and roughness controlled cell adhesion and collagen formation in electrospun PCL fibers for bone regeneration. Materials and Design, 2020, vol. 194, art. 108915. https://doi.org/10.1016/j.matdes.2020.108915
35. Youssef M. A., Von Krockow N., Pfaff J. A. Diagnostic reliability and accuracy of the hydraulic contrast lift protocol in the radiographic detection of sinus lift and perforation: ex vivo randomized split-mouth study in an ovine model. Biodiversity Data Journal, 2024, vol. 10, no. 1, art. 6. https://doi.org/10.1038/s41405-024-00188-6
36. Bhawal U. K., Uchida R., Kuboyama N., Asakura T., Hiratsuka K., Nishiyama N. Effect of the surface morphology of silk fibroin scaffolds for bone regeneration. Journal of Biomedical Materials Research, 2016, vol. 27, no. 4, pp. 413–424. https://doi.org/10.3233/BME-161595
Review
For citations:
Rubnikovich S.P., Sirak S.V., Denisova Yu.L., Perikova M.G., Lenev V.N., Bykova N.I., Arutyunov A.V., Shovgenov V.B. Comparative analysis of the efficiency of osteogenesis in peri-implant defect using scaffolds based on collagen, tricalcium phosphate and porous hydroxyapatite ceramics. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2025;22(2):119-133. (In Russ.) https://doi.org/10.29235/1814-6023-2025-22-2-119-133