Changes in morphometric and neurochemical parameters of brain structure in patients with post-COVID syndrome
https://doi.org/10.29235/1814-6023-2025-22-2-102-118
Abstract
Post-COVID syndrome is poorly defined complex of different symptoms predominantly functional disorders, which are diagnosed in 30–70 % of patients after COVID-19 infection.
To determine the pathogenic basis of neurological symptoms of post-COVID syndrome 105 patients (48 men, 40 women, mean age 47 [40; 54.5]) with post-COVID syndrome in the period from 3 months after COVID-infection and 10 people of the control group (4 men, 6 women, mean age 40 [28; 50]) were examined using structural magnetic resonance imaging (MRI) and magnetic resonance spectroscopy.
After dividing of post-COVID patients group into three subgroups according to the severity of complaints no significant morphological differences in brain structures were determined according to MRI data. However was revealed interhemispheric asymmetry as the cerebral cortex thinning in left frontal lobe ( p = 0.006) and higher left temporal horn of the side ventricle ( p = 0.007) in subgroup post COVID patients with severity symptoms. Was revealed decrease of the N-acetylaspartate/creatinine (NAA/Cr) ratio in the anterior part of the cingulate gyrus on both sides ( p = 0.025 on the right, p = 0.025 on the left) and in the center semiovale on the right sides ( p = 0.001), an increase of choline/creatinine (Cho/Cr) ratio in the anterior cingulate gyrus on both sides ( p < 0.01 on the right) and ( p = 0.04 on the left), right next to areas of decreased NAA/Cr ratio. It was also revealed decrease of the myoinositol/creatinine ratio in the center semiovale area on the right ( p = 0.038) and the middle cingulate gyrus on the left ( p = 0.027). According to the functional topography of the brain neuromediation changes in the anterior cingulate gyrus and center semiovale may have clinical correlates as impaired executive functions, memory and mood disturbance what is related to post-COVID syndrome.
Thus we found that neurological symptoms of post-COVID syndrome are based on multidirectional changes in the secretion of NAA and Cho in the cingulate gyrus of the brain without accompanying morphological pathology.
About the Authors
I. O. StomaBelarus
Igor O. Stoma – D. Sc. (Med.), Professor, Rector.
5, Lange Str., 246000, Gomel
O. Yu. Baranov
Belarus
Oleg Yu. Baranov – Corresponding Member, D. Sc. (Biol.), Professor, Academician-Secretary.
66, Nezavisimosti Ave., 220072, Minsk
N. A. Belyakov
Russian Federation
Nikolay A. Belyakov – Academician of the Russian Academy of Sciences, Full Member of the Russian Academy of Sciences, D. Sc. (Med.), Professor, Head of the NorthWest District Center for the Prevention and Control of AIDS.
14, Mira Str., 197101, St. Petersburg
N. V. Halinouskaya
Belarus
Natalya V. Halinouskaya – D. Sc. (Med.), Professor, Dean.
5, Lange Str., 246000, Gomel
E. V. Voropaev
Belarus
Evgeniy V. Voropaev – Ph. D. (Med.), Associate Professor, Vice-Rector for Research.
5, Lange Str., 246000, Gomel
V. V. Rassokhin
Russian Federation
Vadim V. Rassokhin – D. Sc. (Med.), Leading Researcher.
14, Mira Str., 197101, St. Petersburg
N. V. Bobovich
Belarus
Natalya V. Bobovich – Radiologist.
2, Meditsinskaya Str., 246041, Gomel
A. A. Barbarovich
Belarus
Anastasia A. Barbarovich – Assistant.
5, Lange Str., 246000, Gomel
O. V. Osipkina
Belarus
Olga V. Osipkina – Head of the Laboratory.
5, Lange Str., 246000, Gomel
O. L. Nikiforova
Belarus
Olga L. Nikiforova – Senior Lecturer.
5, Lange Str., 246000, Gomel
References
1. Lennox J. L., van Zuuren E. J., Prasad P. (еds.). COVID-19. Overview and recommendations. DynaMed. Available at: https://www.dynamed.com/condition/covid-19#GUID-C851C3C1-5E99-495E-A831-3BF27FC59059 (accessed 10.01.2025).
2. Gorbalenya A. E., Baker S. C., Baric R. S., de Groot R. J., Drosten C., Gulyaeva A. A. [et al.]. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 2020, vol. 5, no. 4, pp. 536–544. https://doi.org/10.1038/s41564-020-0695-z
3. van Doremalen N., Bushmaker T., Morris D. H., Holbrook M. G., Gamble A., Williamson B. N. [et al.]. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New England Journal of Medicine, 2020, vol. 382, no. 16, pp. 1564–1567. https://doi.org/10.1056/NEJMc2004973
4. Bradley B. T., Maioli H., Johnston R., Chaudhry I., Fink S. L., Xu H. [et al.]. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet, 2020, vol. 396, no. 10247, pp. 320–332. https://doi.org/10.1016/S0140-6736(20)31305-2
5. Yuan Y., Jiao B., Qu L., Yang D., Liu R. The development of COVID-19 treatment. Frontiers in Immunology, 2023, vol. 14, art. 1125246. https://doi.org/10.3389/fimmu.2023.1125246
6. Chung Y. S., Lam C. Y., Tan P. H., Tsang H. F., Wong S. C. Comprehensive review of COVID-19: epidemiology, pathogenesis, advancement in diagnostic and detection techniques, and post-pandemic treatment strategies. International Journal of Molecular Sciences, 2024, vol. 25, no. 15, art. 8155. https://doi.org/10.3390/ijms25158155
7. Grasselli G., Greco M., Zanella A., Albano G., Antonelli M., Bellani G. [et al.]. Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy, Italy. JAMA Internal Medicine, 2020, vol. 180, no. 10, pp. 1345–1355. https://doi.org/10.1001/jamainternmed.2020.3539
8. Cheng L.-l., Li Z.-t., Wu H.-k., Li F., Qiu Y., Wang T. [et al.]. Clinical and pathogen features of COVID-19-associated infections during an Omicron strain outbreak in Guangzhou, China. Microbiology Spectrum, 2024, vol. 12, no. 10, art. e0340623. https://doi.org/10.1128/spectrum.03406-23
9. Scoppetta C., Casciato S., Di Gennaro G. Lethality rate of the two waves of the COVID-19 pandemic in Italy. European Review for Medical and Pharmacological Sciences, 2021, vol. 25, no. 1, pp. 9–10. https://doi.org/10.26355/eurrev_202101_24318
10. Wolf J. M., Petek H., Maccari J. G., Nasi L. A. COVID-19 pandemic in Southern Brazil: Hospitalizations, intensive care unit admissions, lethality rates, and length of stay between March 2020 and April 2022. Journal of Medical Virology, 2022, vol. 94, no. 10, pp. 4839–4849. https://doi.org/10.1002/jmv.27942
11. Santana-de Anda K., Torres-Ruiz J., Mejía-Domínguez N. R., Alcalá-Carmona B., Maravillas-Montero J. L., PáezFranco J. C. [et al.]. Novel clinical, immunological, and metabolic features associated with persistent post-acute COVID-19 syndrome. International Journal of Molecular Sciences, 2024, vol. 25, no. 17, art. 9661. https://doi.org/10.3390/ijms25179661
12. Peluso M. J., Deeks S. G. Mechanisms of long COVID and the path toward therapeutics. Cell, 2024, vol. 187, no. 20, pp. 5500–5529. https://doi.org/10.1016/j.cell.2024.07.054
13. Greenhalgh T., Knight M., A’Court C., Buxton M., Husain L. Management of post-acute covid-19 in primary care. BMJ, 2020, vol. 370, art. m3026. https://doi.org/10.1136/bmj.m3026
14. Shah W., Hillman T., Playford E. D., Hishmeh L. Managing the long-term effects of COVID-19: Summary of NICE, SIGN, and RCGP rapid guideline. BMJ, 2021, vol. 372, art. n136. https://doi.org/10.1136/bmj.n136
15. Taylor K., Pearson M., Das S., Sardell J., Chocian K., Gardner S. Genetic risk factors for severe and fatigue dominant long COVID and commonalities with ME/CFS identified by combinatorial analysis. Journal of Translational Medicine, 2023, vol. 21, art. 775. https://doi.org/10.1186/s12967-023-04588-4
16. Peluso M. J., Kelly J. D., Lu S., Goldberg S. A., Davidson M. C., Mathur S. [et al.]. Persistence, magnitude, and patterns of postacute symptoms and quality of life following onset of SARS-CoV-2 infection: Cohort description and approaches for measurement. Open Forum Infectious Diseases, 2022, vol. 9, no. 2, art. ofab640. https://doi.org/10.1093/ofid/ofab640
17. Kenny G., McCann K., O’Brien C., Savinelli S., Tinago W., Yousif O. [et al.]. Identification of distinct long COVID clinical phenotypes through cluster analysis of self-reported symptoms. Open Forum Infectious Diseases, 2022, vol. 9, no. 4, art. ofac060. https://doi.org/10.1093/ofid/ofac060
18. Yin K., Peluso M. J., Luo X., Thomas R., Shin M. G., Neidleman J. [et al.]. Long COVID manifests with T cell dysregulation, inflammation and an uncoordinated adaptive immune response to SARS-CoV-2. Nature Immunology, 2024, vol. 25, no. 2, pp. 218–225. https://doi.org/10.1038/s41590-023-01724-6
19. Molnar T., Lehoczki A., Fekete M., Varnai R., Zavori L., Erdo-Bonyar S., Simon D., Berki T., Csecsei P., Ezer E. Mitochondrial dysfunction in long COVID: mechanisms, consequences, and potential therapeutic approaches. Geroscience, 2024, vol. 46, no. 5, pp. 5267–5286. https://doi.org/10.1007/s11357-024-01165-5
20. O’Connor E. E., Salerno-Goncalves R., Rednam N., O’Brien R., Rock P., Levine A. R., Zeffiro T. A. Macroand microstructural white matter differences in neurologic postacute sequelae of SARS-CoV-2 infection. American Journal of Neuroradiology, 2024, vol. 45, no. 12, pp. 1910–1918. https://doi.org/10.3174/ajnr.A8481
21. Mohammadi S., Ghaderi S. Post-COVID-19 conditions: a systematic review on advanced magnetic resonance neuroimaging findings. Neurological Sciences, 2024, vol. 45, no. 5, pp. 1815–1833. https://doi.org/10.1007/s10072-024-07427-6
22. Marinkovic K., White D. R., Alderson Myers A., Parker K. S., Arienzo D., Mason G. F. Cortical GABA levels are reduced in post-acute COVID-19 syndrome. Brain Sciences, 2023, vol. 13, no. 12, art. 1666. https://doi.org/10.3390/brainsci13121666
23. Ostojic J., Kozic D., Ostojic S., Ilic A. D., Galic V., Matijasevic J., Dragicevic D., Barak O., Boban J. Decreased cerebral creatine and N-acetyl aspartate concentrations after severe COVID-19 infection: A magnetic resonance spectroscopy study. Journal of Clinical Medicine, 2024, vol. 13, no. 14, art. 4128. https://doi.org/10.3390/jcm13144128
24. Pajuelo D., Dezortova M., Hajek M., Ibrahimova M., Ibrahim I. Metabolic changes assessed by 1H MR spectroscopy in the corpus callosum of post-COVID patients. MAGMA, 2024, vol. 37, no. 5, pp. 937–946. https://doi.org/10.1007/s10334024-01171-w
25. Vints W. A. J., Valatkevičienė K., Levin O., Weerasekera A., Jesmanas S., Kušleikienė S. [et al.]. Hippocampal neurometabolic and structural changes from pre-to post-COVID-19: A case-series study. Magnetic Resonance Imaging, 2024, vol. 109, pp. 249–255. https://doi.org/10.1016/j.mri.2024.03.032
26. Нalinouskaya N. V., Stoma I. O., Voropaev E. V., Barbarovich A. A., Bobovich N. V., Osipkina O. V. Spectrum of neuropsychological abnormalities in patients with post-COVID. Nevrologiya i neirokhirurgiya. Vostochnaya Evropa [Neurology and Neurosurgery. Eastern Europe], 2024, vol. 14, no. 3, pp. 323–334 (in Russian).
27. Stolyarenko L. D. Fundamentals of Psychology. Rostov-on-Don, Feniks Publ., 2005. 672 p. (in Russian).
28. Ernst T., Ryan M. C., Liang H. J., Wang J. P., Cunningham E., Saleh M. G., Kottilil S., Chang L. Neuronal and glial metabolite abnormalities in participants with persistent neuropsychiatric symptoms after COVID-19: A brain proton magnetic resonance spectroscopy study. Journal of Infectious Diseases, 2023, vol. 28, no. 11, pp. 1559–1570. https://doi.org/10.1093/infdis/jiad309
Review
For citations:
Stoma I.O., Baranov O.Yu., Belyakov N.A., Halinouskaya N.V., Voropaev E.V., Rassokhin V.V., Bobovich N.V., Barbarovich A.A., Osipkina O.V., Nikiforova O.L. Changes in morphometric and neurochemical parameters of brain structure in patients with post-COVID syndrome. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2025;22(2):102-118. (In Russ.) https://doi.org/10.29235/1814-6023-2025-22-2-102-118