Effect of ascorbic acid on obtaining chondrogenic pre-differentiated mesenchymal stem/stromal cells
https://doi.org/10.29235/1814-6023-2025-22-1-57-64
Abstract
Mesenchymal stem/stromal cells (MSCs) have unique functional properties, one of which is the chondrogenic differentiation. This population of cells is being used in clinical practice for repairing cartilage tissue. Various combinations of growth factors promote the expression of markers of hyaline cartilage, but also induce hypertrophy’s markers. There is evidence that ascorbic acid can promote chondrogenic differentiation of MSCs by increasing the transcription of Col2, so we have studied when adding ascorbic acid to the differentiation medium to the previously developed cytokine cocktail in order to obtain a hyaline-like matrix. There is a different time of induction of chondrogenesis in MSCs, so we assumed to reduce the induction period of chondrogenic pre-differentiation of MSCs. Based on our studies we confirmed a positive effect of ascorbic acid on the expression of Col2, which indicates the possibility of obtaining strong and stable chondrogenic differentiation of MSCs. The analysis of the expression of genes-markers of chondrogenic differentiation of MSCs and the synthesis of extracellular matrix components on the 4th and 7th days showed a possibility of reducing the pre-differentiation period to 4 days.
About the Authors
H. A. ZhernasechankaBelarus
Hanna A. Zhernasechanka – Ph. D. (Biol.), Leading Researcher
43, Frunzenskaya Str., v. Borovliany, 223053, Minsk Region
Ya. I. Isaikina
Belarus
Yanina I. Isaikina – Ph. D. (Biol.), Head of the Laboratory
43, Frunzenskaya Str., v. Borovliany, 223053, Minsk Region
References
1. Friedenstein A. J., Chailakhjan R. K., Lalykina K. S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell and Tissue Kinetics, 1970, vol. 3, no. 4, pp. 393–403. https://doi.org/10.1111/j.1365-2184.1970.tb00347.x
2. Caplan A. I. Mesenchymal stem cells. Journal of Orthopaedic Research, 1991, vol. 9, no. 5, pp. 641–650. https://doi.org/10.1002/jor.1100090504
3. Zhuang W.-Z., Lin Y.-H., Su L.-J., Wu M.-S., Jeng H.-Y., Chang H.-C., Huang Y.-H., Ling T.-Y. Mesenchymal stem/ stromal cell-based therapy: mechanism, systemic safety and biodistribution for precision clinical applications. Journal of Biomedical Science, 2021, vol. 28, no. 1, art. 28. https://doi.org/10.1186/s12929-021-00725-7
4. Koritko A. A., Krivenko S. I., Shcherba A. E., Primakova E. A., Gomon A. A., Petrovskaya E. G., Dedyulya N. I., Buzuk E. S. Role of mesenchymal stem cells in maintaining the viability and functional activity of hepatocyte culture in vitro. Vestsі Natsyyanal’nai akademіі navuk Belarusі. Seryya medytsynskіkh navuk = Proceedings of the National Academy of Sciences of Belarus, Medical series, 2017, no. 1, pp. 7–14 (in Russian).
5. Kosmacheva S. M., Dubovik D. L., Ignatenko S. I., Severin I. N., Kuvyrkov E. V., Khulup G. Ya. Optimization of protocols for the differentiation of mesenchymal stem cells into cells of bone and cartilage tissue for use in clinical practice. Available at: http://med.by/dmn/book.php?book=15-18_5 (accessed 22.11.2024) (in Russian).
6. Antonevich N. G., Goncharov A. E., Chekan V. L., Shulepova E. A., Rynda E. G. Therapy of chronic stenosis of laryngotracheal stenosis with the use of mesenchymal stem cells: two-year observation results. Vestsi Natsyyanal’nai akademii navuk Belarusi. Serуya medуtsynskikh navuk = Proceedings of the National Academy of Sciences of Belarus. Medical series, 2020, vol. 17, no. 4, pp. 417–426 (in Russian.)
7. Assis-Ribas T., Forni M. F., Winnischofer S. M. B., Sogayar M. C., Trombetta-Lima M. Extracellular matrix dynamics during mesenchymal stem cells differentiation. Developmental Biology, 2018, vol. 437, no. 2, pp. 63–74. https://doi.org/10.1016/j.ydbio.2018.03.002
8. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006, vol. 8, no. 4, pp. 315–317. https://doi.org/10.1080/14653240600855905
9. Busser H., Najar M., Raicevic G., Pieters K., Velez Pombo R., Philippart P., Meuleman N., Bron D., Lagneaux L. Isolation and characterization of human mesenchymal stromal cell subpopulations: Comparison of bone marrow and adipose tissue. Stem Cells and Development, 2015, vol. 24, no. 18, pp. 2142–2157. https://doi.org/10.1089/scd.2015.0172
10. Jakobsen R. B., Østrup E., Zhang X., Mikkelsen T. S., Brinchmann J. E. Analysis of the effects of five factors relevant to in vitro chondrogenesis of human mesenchymal stem cells using factorial design and high throughput mRNA-profiling. PloS One, 2014, vol. 9, no. 5, p. e96615. https://doi.org/10.1371/journal.pone.0096615
11. Ruhl T., Beier J. P. Quantification of chondrogenic differentiation in monolayer cultures of mesenchymal stromal cells. Analytical Biochemistry, 2019, vol. 582, art. 113356. https://doi.org/10.1016/j.ab.2019.113356
12. Barry F., Boynton R. E., Liu B., Murphy J. M. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Experimental Cell Research, 2001, vol. 268, no. 2, pp. 189–200. https://doi.org/10.1006/excr.2001.5278
13. Fensky F., Reichert J. C., Traube A., Rackwitz L., Siebenlist S., Nöth U. Chondrogenic predifferentiation of human mesenchymal stem cells in collagen type I hydrogels. Biomedizinische Technik. Biomedical Engineering, 2014, vol. 59, no. 5, pp. 375–383. https://doi.org/10.1515/bmt-2013-0076
14. Branly T., Contentin R., Desancé M., Jacquel T., Bertoni L., Jacquet S. [et al.]. Improvement of the chondrocytespecific phenotype upon equine bone marrow mesenchymal stem cell differentiation: Influence of culture time, transforming growth factors and type i collagen siRNAs on the differentiation index. International Journal of Molecular Sciences, 2018, vol. 19, no. 2, art. 435. https://doi.org/10.3390/ijms19020435
15. Zhong L., Huang X., Karperien M., Post J. N. The regulatory role of signaling crosstalk in hypertrophy of MSCs and human articular chondrocytes. International Journal of Molecular Sciences, 2015, vol. 16, no. 8, pp. 19225–19247. https://doi.org/10.3390/ijms160819225
16. Dahlin R. L., Ni M., Meretoja V. V., Kasper F. K., Mikos A. G. TGF-β3-induced chondrogenesis in co-cultures of chondrocytes and mesenchymal stem cells on biodegradable scaffolds. Biomaterials, 2014, vol. 35, no. 1, pp. 123–132. https://doi.org/10.1016/j.biomaterials.2013.09.086
17. Zimmermann P., Boeuf S., Dickhut A., Boehmer S., Olek S., Richter W. Correlation of COL10A1 induction during chondrogenesis of mesenchymal stem cells with demethylation of two CpG sites in the COL10A1 promoter. Arthritis and Rheumatism, 2008, vol. 58, no. 9, pp. 2743–2753. https://doi.org/10.1002/art.23736
18. Bwalya E. C., Wijekoon H. S., Fang J., Kim S., Hosoya K., Okumura M. Independent chondrogenic potential of canine bone marrow-derived mesenchymal stem cells in monolayer expansion cultures decreases in a passage-dependent pattern. Journal of Veterinary Medical Science, 2018, vol. 80, no. 11, pp. 1681–1687. https://doi.org/10.1292/jvms.18-0202
19. Theruvath A. J., Mahmoud E. E., Wu W., Nejadnik H., Kiru L., Liang T., Felt S., Daldrup-Link H. E. Ascorbic acid and iron supplement treatment improves stem cell-mediated cartilage regeneration in a minipig model. American Journal of Sports Medicine, 2021, vol. 49, no. 7, pp. 1861–1870. https://doi.org/10.1177/03635465211005754
20. Langenbach F., Handschel J. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Research and Therapy, 2013, vol. 4, no. 5, art. 117. https://doi.org/10.1186/scrt328
21. Zhernosechenko A., Isaikina Ya., Filipovich T. Effect of a combination of TGFβ and IGF growth factors on the chondrogenic potential of mesenchymal bone marrow stem cells. Nauka i innovatsii [Science and innovations], 2021, no. 2, pp. 78–83 (in Russian).
22. Mahmoudifar N., Doran P. M. Chondrogenesis and cartilage tissue engineering: the longer road to technology development. Trends in Biotechnology, 2012, vol. 30, no. 3, pp. 166–176. https://doi.org/10.1016/j.tibtech.2011.09.002
23. Camarero-Espinosa S., Rothen-Rutishauser B., Fosterac E. J., Weder Ch. Articular cartilage: from formation to tissue engineering. Biomaterials Science, 2016, vol. 4, no. 5, pp. 734–767. https://doi.org/10.1039/C6BM00068A
Review
For citations:
Zhernasechanka H.A., Isaikina Ya.I. Effect of ascorbic acid on obtaining chondrogenic pre-differentiated mesenchymal stem/stromal cells. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2025;22(1):57-64. (In Russ.) https://doi.org/10.29235/1814-6023-2025-22-1-57-64