Age-related features of the intestinal microbiota changes in Wistar rat pups after application of antibiotics and prebiotic 2′-fucosyllactose
https://doi.org/10.29235/1814-6023-2024-21-4-334-344
Abstract
The gut microbiota plays an important role in the formation of the body’s regulatory systems (nervous, endocrine, immune), which is especially important at an early age. Hence, gut dysbiosis can lead to an impaired development of both the intestinal microbiota and these regulatory systems. Prebiotics can have a positive effect on the development of the intestinal microbiome, which can correct negative changes.
The aim of this study is to investigate the features of development of antibiotic-associated dysbiosis in the early postnatal period in rats and to evaluate the effect of 2′-fucosyllactose in health and during dysbiosis.
The study was conducted on Wistar rats aged 12–26 days. To develop dysbiosis at an early age, the following mixtures were used: a mixture of ampicillin trihydrate 75 mg/kg and metronidazole 50 mg/kg and a mixture of amoxicillin 30 mg/kg and cephalexin 20 mg/kg for three days, starting on the 12th day of life. As a prebiotic 2′-fucosyllactose at a dose of 1 g/kg was used, starting on the 12th day and to the last experiment day.
In healthy animals, there is a decrease in the gut content of Bifidobacterium spp. and Enterococcus spp. at the age of 26 days. A mixture of ampicillin trihydrate 75 mg/kg and metronidazole 50 mg/kg leads to gut dysbiosis – growth suppression of bifidobacteria, lactobacilli and enterococci. After the end of antibiotics application and continued lactation, the titer of the described bacteria is restored. 2′-fucosyllactose has an effect on the preservation of the titer of Bifidobacterium spp. and Enterococcus spp., both in healthy animals and after early dysbiosis.
Our results indicate that antibiotic-associated dysbiosis at an early age is characterized by a temporary but powerful effect. At the same time, the use of 2′-fucosyllactose leads to preserving important probiotic groups of intestinal bacteria, both in health and after dysbiosis.
About the Authors
A. A. ZhabinskayaBelarus
Alesia A. Zhabinskaya ‒ Researcher
28, Akademicheskaya Str., 220072, Minsk
T. B. Melik-Kasumov
Belarus
Tigran B. Melik-Kasumov ‒ Ph. D. (Biol.), Head of the Laboratory
28, Akademicheskaya Str., 220072, Minsk
H. E. Pyzh
Belarus
Hanna E. Pyzh ‒ Ph. D. (Biol.)., Senior Researcher
28, Akademicheskaya Str., 220072, Minsk
References
1. Cryan J. F., O’Riordan K. J., Cowan C. S. M., Sandhu K. V., Bastiaanssen T. F. S., Boehme M. [et al.]. The microbiotagut-brain axis. Physiological Reviews, 2019, vol. 99, no. 4, pp. 1877–2013. https://doi.org/10.1152/physrev.00018.2018
2. Sonnenburg J., Sonnenburg E. Vulnerability of the industrialized microbiota. Science, 2019, vol. 366, no. 6464, p. eaaw9255. https://doi.org/10.1126/science.aaw9255
3. Varesi A., Pierella E., Romeo M., Piccini G., Alfano C., Bjørklund G. [et al.]. The potential role of gut microbiota in Alzheimer’s disease: From diagnosis to treatment. Nutrients, 2022, vol. 14, no. 3, art. 688. https://doi.org/10.3390/nu14030668
4. Chudzik A., Orzyłowska A., Rola R., Stanisz G. J. Probiotics, prebiotics and postbiotics on mitigation of depression symptoms: Modulation of the brain-gut-microbiome axis. Biomolecules, 2021, vol. 11, no. 7, art. 1000. https://doi.org/10.3390/ biom11071000
5. Rinninella E., Raoul P., Cintoni M., Franceschi F., Donato Miggiano G. A., Gasbarrini A., Mele M. C. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 2019, vol. 7, no. 1, art. 14. https://doi.org/10.3390/microorganisms7010014
6. Cristofori F., Dargenio V. N., Dargenio C., Miniello V. L., Barone M., Francavilla R. Anti-Inflammatory and immunomodulatory effects of probiotics in gut inflammation: A door to the body. Frontiers in Immunology, 2021, vol. 12, art. 578386. https://doi.org/10.3389/fimmu.2021.578386
7. Stuivenberg G., Burton J., Bron P., Reid G. Why Are bifidobacteria important for infants? Microorganisms, 2022, vol. 10, no. 2, art. 278. https://doi.org/10.3390/microorganisms10020278
8. Yadav M., Verma M. K., Chauhan N. S. A review of metabolic potential of human gut microbiome in human nutrition. Archives of Microbiology, 2018, vol. 200, no. 2, pp. 203–217. https://doi.org/10.1007/s00203-017-1459-x
9. Turnbaugh P. J., Ley R. E., Hamady M., Fraser-Liggett C. M., Knight R., Gordon J. I. The human microbiome project. Nature, 2007, vol. 449, no. 7164, pp. 804–810. https://doi.org/10.1038/nature06244
10. Zeissig S., Blumberg R. S. Life at the beginning: perturbation of the microbiota by antibiotics in early life and its role in health and disease. Nature Immunology, 2014, vol. 1, no. 4, pp. 307–310. https://doi.org/10.1038/ni.2847
11. Jangi S., Gandhi R., Cox L., Li N., von Glehn F., Yan R. [et al.]. Alterations of the human gut microbiome in multiple sclerosis. Nature Communications, 2016, vol. 7, art. 12015. https://doi.org/10.1038/ncomms12015
12. Ilie O.-D., Ciobica A., McKenna J., Doroftei B., Mavroudis I. Minireview on the relations between gut microflora and Parkinson’s disease: Further biochemical (oxidative stress), inflammatory, and neurological particularities. Oxidative Medicine and Cellular Longevity, 2020, vol. 2020, art. 4518023. https://doi.org/10.1155/2020/4518023
13. Jiang C., Li G., Huang P., Liu Z., Zhao B. The gut microbiota and Alzheimer’s disease. Journal of Alzheimer’s Disease, 2017, vol. 58, pp. 1–15. https://doi.org/10.3233/JAD-161141
14. Mulle J. G., Sharp W. G., Cubells J. F. The gut microbiome: a new frontier in autism research. Current Psychiatry Reports, 2013, vol. 15, no. 2, art. 337. https://doi.org/10.1007/s11920-012-0337-0
15. Lee K., Kim N., Shim J. O., Kim G.-H. Gut bacterial dysbiosis in children with intractable epilepsy. Journal of Clinical Medicine, 2021, vol. 10, no. 1, art. 5. https://doi.org/10.3390/jcm10010005
16. Bastard Q. L., Chapelet G., Javaudin F., Lepelletier D., Batard E., Montassier E. The effects of inulin on gut microbial composition: a systematic review of evidence from human studies. European Journal of Clinical Microbiology and Infectious Diseases, 2020, vol. 39, no. 3, pp. 403–413. https://doi.org/10.1007/s10096-019-03721-w
17. Patel S., Goyal A. The current trends and future perspectives of prebiotics research: a review. 3 Biotech, 2012, vol. 2, no. 2, pp. 115–125. https://doi.org/10.1007/s13205-012-0044-x
18. Harper A., Vijayakumar V., Ouwehand A., Ter Haar J., Obis D., Espadaler J., Binda S., Desiraju S., Day R. Viral infections, the microbiome, and probiotics. Frontiers in Cellular and Infection Microbiology, 2021, vol. 10, art. 596166. https://doi.org/10.3389/fcimb.2020.596166
19. Zhu Y., Wan L., Li W., Ni D., Zhang W., Yan X., Mu W. Recent advances on 2′-fucosyllactose: physiological properties, applications, and production approaches. Critical Reviews in Food Science and Nutrition, 2022, vol. 62, no. 8, pp. 2083–2092. https://doi.org/10.1080/10408398.2020.1850413
20. Li R., Zhou Y., Xu Y. Comparative analysis of oligosaccharides in the milk of human and animals by using LC-QE-HF-MS. Food Chemistry: X, 2023, vol. 18, art. 100705. https://doi.org/10.1016/j.fochx.2023.100705
21. Asaoka D., Xiao J., Takeda T., Yanagisawa N., Yamazaki T., Matsubara Y. [et al.]. Effect of probiotic bifidobacterium breve in improving cognitive function and preventing brain atrophy in older patients with suspected mild cognitive impairment: Results of a 24-week randomized, double-blind, placebo-controlled trial. Journal of Alzheimer’s Disease, 2022, vol. 88, no. 1, pp. 75–95. https://doi.org/10.3233/JAD-220148
22. Lin C., Lin Y., Wang S., Wang J., Mao X., Zhou Y., Zhang H., Chen W., Wang G. Bifidobacterium animalis subsp. lactis boosts neonatal immunity: unravelling systemic defences against Salmonella. Food and Function, 2024, vol. 15, no. 1, pp. 234–254. https://doi.org/10.1039/D3FO03686C
23. Zubareva O. E., Dyomina A. V., Kovalenko A. A., Roginskaya A. I., Melik-Kasumov T. B., Korneeva M. A. [et al.]. Beneficial effects of probiotic bifidobacterium longum in a lithium-pilocarpine model of temporal lobe epilepsy in rats. International Journal of Molecular Sciences, 2023, vol. 24, no. 9, art. 8451. https://doi.org/10.3390/ijms24098451
24. Krawczyk B., Wityk P., Gałęcka M., Michalik M. The many faces of Enterococcus spp. ‒ commensal, probiotic and opportunistic pathogen. Microorganisms, 2021, vol. 9, no. 9, art. 1900. https://doi.org/10.3390/microorganisms9091900
25. Anjum J., Zaidi A., Barrett K., Tariq M. A potentially probiotic strain of Enterococcus faecalis from human milk that is avirulent, antibiotic sensitive, and nonbreaching of the gut barrier. Archives of Microbiology, 20222, vol. 204, no. 2, art. 158. https://doi.org/10.1007/s00203-022-02754-8
26. van Hal S. J., Willems R. J. L., Gouliouris T., Ballard S. A., Coque T. M., Hammerum A. M. [et al.]. The global dissemination of hospital clones of Enterococcus faecium. Genome Medicine, 2021, vol. 13, no. 1, art. 52 https://doi.org/10.1186/s13073-021-00868-0
27. Dahal R. H., Kim S., Kim Y. K., Kim E. S., Kim J. Insight into gut dysbiosis of patients with inflammatory bowel disease and ischemic colitis. Frontiers in Microbiology, 2023, vol. 14, art. 1174832. https://doi.org/10.3389/fmicb.2023.1174832
28. Iida N., Mizukoshi E., Yamashita T., Yutani M., Seishima J., Wang Z. [et al.]. Chronic liver disease enables gut Enterococcus faecalis colonization to promote liver carcinogenesis. Nature Cancer, 2021, vol. 2, no. 10, pp. 1039–1054. https://doi.org/10.1038/s43018-021-00251-3
29. Chang M. R., Cury A. E. Amphotericin B-metronidazole combination against Candida spp. Revista Iberoamericana de Micología, 1998, vol. 15, no. 2, pp. 78–80.
Review
For citations:
Zhabinskaya A.A., Melik-Kasumov T.B., Pyzh H.E. Age-related features of the intestinal microbiota changes in Wistar rat pups after application of antibiotics and prebiotic 2′-fucosyllactose. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2024;21(4):334-344. (In Russ.) https://doi.org/10.29235/1814-6023-2024-21-4-334-344