Molecular docking of orphan receptors with fatty acid amide
https://doi.org/10.29235/1814-6023-2024-21-2-149-155
Abstract
One of the promising directions for development of new pharmacological drugs for analgesia and other consequences of peripheral nerve damage is the study of the physiological effects of fatty acid amides. The potential selectivity of G-protein receptor antagonists has been evaluated using molecular docking and quantum chemistry methods, and its complexes with fatty acid amides have been constructed. As a result of docking, it was found that PSB-CB5 is a selective antagonist for GPR18 receptors, and O-1918 is a selective antagonist for GPR55. It was found that stable complexes are formed between fatty acid amides (REA, SEO) and orphan receptors (GPR 18, GPR55). Numerous van der Waals contacts and hydrogen bonds play a major role in the interaction of these compounds with receptors.
About the Authors
А. S. DoronkinaBelarus
Anastasya S. Doronkina – Researcher
28, Akademicheskaya Str., 220072, Minsk
А. А. Rudak
Belarus
Anhelina A. Rudak – Junior Researcher
28, Akademicheskaya Str., 220072, Minsk
I. Р. Zhavoronok
Belarus
Irina P. Zhavoronok – Ph. D. (Biol.), Head of the Сenter research of pain
28, Akademicheskaya Str., 220072, Minsk
V. G. Bogdan
Belarus
Vasiliy G. Bogdan – D. Sc. (Med.), Professor, Academician-Secretary
66, Nezavisimоsti Ave., 220072, Minsk
References
1. Colloca L., Ludman T., Bouhassira D., Baron R., Dickenson A. H., Yarnitsky D. [et al.]. Neuropathic pain. Nature Reviews Disease Primers, 2017, vol. 3, art. 17002. https://doi.org/10.1038/nrdp.2017.2
2. Costa B., Comelli F., Bettoni I., Colleoni M., Giagnoni G. The endogenous fatty acid amide, palmitoylethanolamide, has antiallodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: involvement of CB (1), TRPV1 and PPARs receptors and neurotrophic factors. Pain, 2008, vol. 139, no. 3, pp. 541–550. https://doi.org/10.1016/j.pain.2008.06.003
3. Nourbakhsh F., Atabaki R. Roohbakhsh A. The role of orphan G protein-coupled receptors in the modulation of pain: A review. Life Sciences, 2018, vol. 212, pp. 59–69. https://doi.org/10.1016/j.lfs.2018.09.028
4. Sheikhi M., Shahab S., Alnajjar R., Ahmadianarog M., Kaviani S. Investigation of adsorption tyrphostin AG528 anticancer drug upon the CNT (6, 6-6) nanotube: a DFT study. Current Molecular Medicine, 2019, vol. 19, no. 2, pp. 91–104. https://doi.org/10.2174/1566524019666190226111823
5. Ryberg E., Larsson N., Sjögren S., Hjorth S., Hermansson N. O., Leonova J., Elebring T., Nilsson K., Drmota T., Greasley P. J. The orphan receptor GPR55 is a novel cannabinoid receptor. British Journal of Pharmacology, 2007, vol. 152, no. 7, pp. 1092‒1101. https://doi.org/10.1038/sj.bjp.0707460
6. Gacasan S. B., Baker D. L., Parrill A. L. G protein-coupled receptors: The evolution of structural insight. AIMS Biophysics, 2017, vol. 4, no. 3, pp. 491–527. https://doi.org/10.3934/biophy.2017.3.491
7. Neumann A., Engel V., Mahardhika A. B., Schoeder C. T., Namasivayam V., Kieć-Kononowicz K., Müller C. E. Computational investigations on the binding mode of ligands for the cannabinoid-activated G protein-coupled receptor GPR18. Biomolecules, 2020, vol. 10, no. 5, art. 686. https://doi.org/10.3390/biom10050686
8. van Hecke O., Austin S. K., Khan R. A., Smith B. H., Torrance N. Neuropathic pain in the general population: A systematic review of epidemiological studies. Pain, 2014, vol. 155, no. 4, pp. 654–662. https://doi.org/10.1016/j.pain.2013.11.013
9. Ezzili C., Otrubova K., Boger D. L. Fatty acid amide signaling molecules. Bioorganic and Medicinal Chemistry Letters, 2010, vol. 20, no. 20, pp. 5959–5968. https://doi.org/10.1016/j.bmcl.2010.08.048
10. Shahab S., Sheikhi M. Antioxidant properties of the phorbol: A DFT approach. Russian Journal of Physical Chemistry, 2020, vol. 14, pp. 15–18. https://doi.org/10.1134/S199079312001045
11. Shahab S., Sheikhi M., Filippovich L., Dikusar E., Pazniak A., Rouhani M., Kumar R. Molecular investigations of the newly synthesized azomethines as antioxidants: theoretical and experimental studies. Current Molecular Medicine, 2019, vol. 19, no. 6, pp. 419–433. https://doi.org/10.2174/1566524019666190509102620
12. Neumann A., Engel V., Mahardhika A. B., Schoeder C. T., Namasivayam V., Kieć-Kononowicz K., Müller C. E. Computational investigations on the binding mode of ligands for the cannabinoid-activated G protein-coupled receptor GPR18. Biomolecules, 2020, vol. 10, no. 5, pp. 686–694. https://doi.org/10.3390/biom10050686
13. Ryberg E., Larsson N., Sjögren S., Hjorth S., Hermansson N. O., Leonova J., Elebring T., Nilsson K., Drmota T., Greasley P. J. The orphan receptor GPR55 is a novel cannabinoid receptor. British Journal of Pharmacology, 2009, vol. 157, no. 7, pp. 1092–1101. https://doi.org/10.1038/sj.bjp.0707460
14. Reyes-Resina I., Navarro G., Aguinaga D., Canela E. I., Schoeder C. T., Załuski M., Kieć-Kononowicz K., Saura C. A., Müller Ch. E., Franco R. Molecular and functional interaction between GPR18 and cannabinoid CB2 G-protein-coupled receptors. Relevance in neurodegenerative diseases. Biochemical Pharmacology, 2018, no. 157, pp. 169–179. https://doi.org/10.1016/j.bcp.2018.06.001
15. Alexander S. P., Christopoulos A., Davenport A. P. G protein-coupled receptors. British Journal of Pharmacology, 2017, no. 175, pp. 117–129.
Review
For citations:
Doronkina А.S., Rudak А.А., Zhavoronok I.Р., Bogdan V.G. Molecular docking of orphan receptors with fatty acid amide. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2024;21(2):149-155. (In Russ.) https://doi.org/10.29235/1814-6023-2024-21-2-149-155