1. Стоматология: сб. клин. протоколов: в 2 ч. / М-во здравоохранения Респ. Беларусь; под общ. ред. С. П. Рубниковича. - Минск: БГМУ, 2023. - Ч. 1. - 468 с.
2. A nanoparticle-based anticaries vaccine enhances the persistent immune response to inhibit streptococcus mutans and prevent caries / Y.-B. Yu [et al.] // Microbiol. Spectr. - 2023. - Vol. 11, N 2. - P. e0432822. https://doi.org/10.1128/spectrum.04328-22
3. Human oral microbiota and its modulation for oral health / Y. Zhang [et al.] // Biomed. Pharmacother. - 2018. - Vol. 99. - P. 883-893. https://doi.org/10.1016/j.biopha.2018.01.146
4. Smith, D. J. Dental caries vaccines: prospects and concerns / D. J. Smith // Crit. Rev. Oral Biol. Med. - 2002. - Vol. 13, N 4. - P. 335-349. https://doi.org/10.1177/154411130201300404
5. Patel, M. Dental caries vaccine: are we there yet? / M. Patel // Lett. Appl. Microbiol. - 2020. - Vol. 70, N 1. - P. 2-12. https://doi.org/10.1111/lam.13218
6. Forssten, S. D. Streptococcus mutans, caries and simulation models / S. D. Forssten, M. Björklund, A. C. Ouwehand // Nutrients. - 2010. - Vol. 2, N 3. - P. 290-298. https://doi.org/10.3390/nu2030290
7. Zhang, J. S. Oral microbiome and dental caries development / J. S. Zhang, C. H. Chu, O. Y. Yu // Dent. J. (Basel). - 2022. - Vol. 10, N 10. - Art. 184. https://doi.org/10.3390/dj10100184
8. Talbman, M. A. Effects of local immunization with Streptococcus mutans on induction of salivary immunoglobulin A antibody and experimental dental caries in rats / M. A. Talbman, D. J. Smith // Infect. Immun. - 1974. - Vol. 9, N 6. - P. 1079-1091. https://doi.org/10.1128/iai.9.6.1079-1091.1974
9. Effective immunity to dental caries: protection of gnotobiotic rats by local immunization with Streptococcus mutans / J. R. McGhee [et al.] // J. Immunol. - 1995. - Vol. 114, N 1, pt. 2. - P. 300-305. https://doi.org/10.4049/jimmunol.114.1_ part_2.300
10. Russell, R. R. Wall-associated protein antigens of Streptococcus mutans / R. R. Russell // J. Gen. Microbiol. - 1979. - Vol. 114, N 1. - P. 109-115. https://doi.org/10.1099/00221287-114-1-109
11. Purification and characterization of a saliva-interacting cell wall protein from Streptococcus mutans serotype f by using monoclonal antibody immunoaffinity chromatography / F. Ackermans [et al.] // Biochem. J. - 1985. - Vol. 228, N 1. - P. 211-217. https://doi.org/10.1042/bj2280211
12. Evidence for an immunological relationship between Streptococcus mutans and human cardiac tissue / M. Hughes [et al.] // Infect. Immun. - 1980. - Vol. 27, N 2. - P. 576-588. https://doi.org/10.1128/iai.27.2.576-588.1980
13. Comparison of Streptococcus mutans and Streptococcus sanguis receptors for human salivary agglutinin / D. R. Demuth [et al.] // Microb. Pathog. - 1990. - Vol. 9, N 3. - P. 199-211. https://doi.org/10.1016/0882-4010(90)90022-i
14. Virulence of a spaP mutant of Streptococcus mutans in a gnotobiotic rat model / P. J. Crowley [et al.] // Infect. Immun. - 1999. - Vol. 67, N 3. - P. 1201-1206. https://doi.org/10.1128/iai.67.3.1201-1206.1999
15. Immunization with purified protein antigens from Streptococcus mutans against dental caries in rhesus monkeys / T. Lehner [et al.] // Infect. Immun. - 1981. - Vol. 34, N 2. - P. 407-415. https://doi.org/10.1128/iai.34.2.407-415.1981
16. Redman, T. K. Oral immunization with recombinant Salmonella typhimurium expressing surface protein antigen A (SpaA) of Streptococcus sobrinus: effects of the Salmonella virulence plasmid on the induction of protective and sustained humoral responses in rats / T. K. Redman, C. C. Harmon, S. M. Michalek // Vaccine. - 1996. - Vol. 14, N 9. - P. 868-878. https://doi.org/10.1016/0264-410x(96)00013-8
17. Immunogenicity and protective effect against oral colonization by Streptococcus mutans of synthetic peptides of a streptococcal surface protein antigen / I. Takahashi [et al.] // J. Immunol. - 1991. - Vol. 146, N 1. - P. 332-336. https://doi.org/10.4049/jimmunol.146.1.332
18. The changing faces of Streptococcus antigen I/II polypeptide family adhesins / L. J. Brady [et al.] // Mol. Microbiol. - 2010. - Vol. 77, N 2. - P. 276-286. https://doi.org/10.1111/j.1365-2958.2010.07212.x
19. Saliva-binding region of Streptococcus mutans surface protein antigen / M. Nakai [et al.] // Infect. Immun. - 1993. - Vol. 61, N 10. - P. 4344-4349. https://doi.org/10.1128/iai.61.10.4344-4349.1993
20. Sequence and structural analysis of surface protein antigen I/II (SpaA) of Streptococcus sobrinus / R. J. LaPolla [et al.] // Infect. Immun. - 1991. - Vol. 59, N 8. - P. 2677-2685. https://doi.org/10.1128/iai.59.8.2677-2685.1991
21. Dental caries vaccine availability: Challenges for the 21st century / A. S. M. Giasuddin [et al.] // J. Immunol. Immunother. - 2017. - Vol. 1, N 7. - Art. 100002.
22. Immunochemistry of the Streptococcus mutans BHT cell membrane: Detection of determinants cross-reactive with human heart tissue / G. Y. Ayakawa [et al.] // Infect. Immun. - 1985. - Vol. 48, N 2. - P. 280-286. https://doi.org/10.1128/iai.48.2.280-286.1985
23. Contribution of cell surface protein antigen PAc of Streptococcus mutans to bacteremia / K. Nakano [et al.] // Microb. Infect. - 2006. - Vol. 8, N 1. - P. 114-121. https://doi.org/10.1016/j.micinf.2005.06.005
24. LT adjuvant modulates epitope specificity and improves the efficacy of murine antibodies elicited by sublingual vaccination with the N-terminal domain of Streptococcus mutans P1 / M. T. Batista [et al.] // Vaccine. - 2017. - Vol. 35, N 52. - P. 7273-7282. https://doi.org/10.1016/j.vaccine.2017.11.007
25. UniProt: the Universal Protein knowledgebase / R. Apweiler [et al.] // Nucl. Acids Res. - 2004. - Vol. 32. - P. D115-D119. https://doi.org/10.1093/nar/gkh131
26. Highly accurate protein structure prediction with AlphaFold / J. Jumper [et al.] // Nature. - 2021. - Vol. 596, N 7873. - P. 583-589. https://doi.org/10.1038/s41586-021-03819-2
27. The PentUnFOLD algorithm as a tool to distinguish the dark and the light sides of the structural instability of proteins / V. V. Poboinev [et al.] // Amino Acids. - 2022. - Vol. 54, N 8. - P. 1155-1171. https://doi.org/10.1007/s00726-022-03153-5
28. Khrustalev, V. V. The PentaFOLD 3.0 algorithm for the selection of stable elements of secondary structure to be included in vaccine peptides / V. V. Khrustalev // Protein Pept. Lett. - 2021. - Vol. 28, N 5. - P. 573-588. https://doi.org/10.2174/0929866527666201110123851
29. Smith, T. F. Identification of common molecular subsequences / T. F. Smith, M. S. Waterman // J. Mol. Biol. - 1981. - Vol. 147, N 1. - P. 195-197. https://doi.org/10.1016/0022-2836(81)90087-5
30. Eisenberg, D. VERIFY3D: assessment of protein models with three-dimensional profiles / D. Eisenberg, R. Lüthy, J. U. Bowie // Methods Enzymol. - 1997. - Vol. 277. - P. 396-404. https://doi.org/10.1016/s0076-6879(97)77022-8
31. PROCHECK: a program to check the stereochemical quality of protein structures / R. A. Laskowski [et al.] // J. App. Cryst. - 1993. - Vol. 26. - P. 283-291. https://doi.org/10.1107/s0021889892009944
32. An intramolecular lock facilitates folding and stabilizes the tertiary structure of Streptococcus mutans adhesin P1 / K. P. Heim [et al.] // Proc. Natl. Acad. Sci USA. - 2014. - Vol. 111, N 44. - P. 15746-15751. https://doi.org/10.1073/pnas.1413018111
33. Engineering protein stability with atomic precision in a monomeric miniprotein / E. G. Baker [et al.] // Nat. Chem. Biol. - 2017. - Vol. 13, N 7. - P. 764-770. https://doi.org/10.1038/nchembio.2380
34. The cytoplasmic tail of influenza A/H1N1 virus hemagglutinin is β-structural / V. V. Khrustalev [et al.] // J. Biomol. Struct. Dyn. - 2022. - Vol. 40, N 10. - P. 4642-4661. https://doi.org/10.1080/07391102.2020.1860827
35. Peptide models of the cytoplasmic tail of influenza A/H1N1 virus hemagglutinin expand understanding its pH-dependent modes of interaction with matrix protein M1 / V. V. Poboinev [et al.] // Protein J. - 2023. - Vol. 42, N 4. - P. 288-304. https://doi.org/10.1007/s10930-023-10101-z